גוטפריד וילהלם לייבניץ

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש
גוטפריד וילהלם לייבניץ
Gottfried Wilhelm von Leibniz
לידה 1 ביולי 1646
פטירה 14 בנובמבר 1716 (בגיל 70)
זרם רציונליזם
תחומי עניין מטאפיזיקה, תורת ההכרה, תאולוגיה, מתמטיקה
הושפע מ אפלטון, אריסטו, הרמב"ם, תומאס אקווינס, רנה דקארט
השפיע על וולטייר, עמנואל קאנט, ברטראנד ראסל, קורט גדל
גוטפריד וילהלם לייבניץ
Gottfried Wilhelm Leibniz
לידה 1 ביולי 1646
פטירה 14 בנובמבר 1716 (בגיל 70)
ענף מדעי מתמטיקה, פיזיקה
תרומות עיקריות

חשבון אינפיניטסימלי המשפט הקטן של פרמה
נוסחת לייבניץ ל-π
דטרמיננטות
מונאדות
הטוב בכל העולמות האפשריים
אנרגיה קינטית
קוסמולוגיה - מרחב וזמן יחסיים
גאולוגיה - היסטוריה של כדור הארץ
פסיכולוגיה - רעיון התת מודע
מושג המשוב (Feedback)
חשבון בינארי
מכונת חישוב - מחשב הפסיעות
מכונת הצפנה
Entscheidungsproblem - בעיית ההכרעה
קלקולוס רציונליזטור


Characteristica universalis - שפה אוניברסלית

גוטפריד וילהלם פון לייבניץגרמנית: Gottfried Wilhelm von Leibniz‏; 1 ביולי 164614 בנובמבר 1716 בהנובר) היה מתמטיקאי, פילוסוף, פיזיקאי ואיש אשכולות גרמני שהשפעתו בולטת הן בהיסטוריה של המתמטיקה והן בהיסטוריה של הפילוסופיה.

במתמטיקה, הוא פיתח את החשבון הדיפרנציאלי והאינטגרלי באופן בלתי תלוי בניוטון, והסימון העדיף שלו הוא זה שנמצא בשימוש רווח כיום. כמה מהעקרונות הפילוסופיים שלו מצאו ביסוס מתמטי רק במאה ה-20. היה מהפוריים שבממציאי ומפתחי המחשבים המכניים, בעבודתו להוספת פונקציות של כפל וחילוק לפסקלין, כמו כן היה הראשון לתאר את מנגנון "מחשבון החוגה"[1] ב-1685. המציא את "התוף המדורג"[2] בו עשה שימוש כדי לבנות את מחשב הפסיעות שלו, ש-150 שנה מאוחר יותר, שימש בסיס לאריתמומטר, המחשב המכני הראשון בייצור סדרתי. בנוסף הגה ופיתח את השיטה הבינארית, בהמשך לרעיונותיהם של פילוסופים קדומים כמו רמון ליול, העומדת בבסיסה של כתיבת התוכנה במחשבים האלקטרוניים.

בפילוסופיה, הוא נודע במיוחד בשל קביעתו האופטימית שהיקום הוא הטוב ביותר שא-לוהים היה יכול ליצור, והפך בשל קביעה זו למושא לעג בידי מחברים מאוחרים יותר כמו וולטר. יחד עם רנה דקארט וברוך שפינוזה, הוא היה אחד משלושת המייצגים הבולטים של זרם הרציונליזם של המאה ה-17. עבודתו של לייבניץ הקדימה את הלוגיקה והפילוסופיה האנליטית המודרנית, אך הפילוסופיה שלו גם חוזרת אחורה למסורת הסכולסטית, שבה היקשים משמעותיים מושגים באמצעות הפעלת ההגיון על עקרונות ראשוניים או הגדרות פריוריות במקום על עדות שהושגה באופן אמפירי. לייבניץ תרם תרומות מכריעות לפיזיקה ולטכנולוגיה, וחזה רעיונות ומושגים שבוססו מאוחר יותר בביולוגיה, רפואה, גאולוגיה, תורת ההסתברות, פסיכולוגיה, בלשנות ובתורת המידע. בכתביו עסק גם בפוליטיקה, משפטים, אתיקה, תאולוגיה, והיסטוריה. תרומותיו למגוון רחב זה של תחומים פזורות בכתבי עת מדעיים, ובעשרות אלפי תכתובות וכתבי יד שלא פורסמו במהלך חייו. כיום, אין עדיין אוסף שלם של כתבי לייבניץ, וכפועל יוצא דין וחשבון מקיף על הישגיו עדיין אינו אפשרי, אם כי ניכר רוחב ועומק היריעה בהגותו.

לייבניץ כתב בעיקר בלטינית ובצרפתית.

ביוגרפיה

חיים מוקדמים

גוטפריד לייבניץ נולד ב-1 ביולי 1646, לקראת סיום מלחמת שלושים השנים, בלייפציג שבסקסוניה, לפרידריך לייבניץ וקתרינה שמוּק.

הוא הוטבל ב-3 ביולי בכנסיית סנט ניקולאס שבלייפציג, וסנדקו היה התאולוג הלותרני מרטין גאייר. אביו מת כשהיה בן שש וחצי, ומאז הוא גודל על ידי אמו. השיעורים שהיא נתנה לבנה השפיעו רבות על נפשו של לייבניץ הצעיר, וניתן למצוא להם הד בהגותו הפילוסופית בהמשך חייו.

אביו של לייבניץ היה פרופסור לפילוסופיה של המוסר באוניברסיטת לייפציג, והבן ירש מאוחר יותר את הספרייה של אביו. הוא קיבל גישה חופשית לספרייה החל מגיל שבע. בעוד שלימודי בית הספר שלו הוגבלו בעיקר ללימוד מספרים של רשויות אחדות, הספרייה של אביו אפשרה לו ללמוד מגוון רחב של טקסטים פילוסופיים ותאולוגיים מתקדמים - כאלה שלא היה נחשף להם עד שנותיו כתלמיד אוניברסיטה. הגישה לספרייה של אביו, שהייתה כתובה בעיקר בלטינית, הובילה גם לשליטה המוקדמת שלו בלטינית, אותה הוא השיג כבר בגיל 12. הוא גם חיבר בגיל 13 במהלך בוקר אחד 300 הקסמטרים של שירה לטינית עבור אירוע מיוחד בבית ספר.

באפריל 1661, בגיל 15, החל לייבניץ, כנער מחונן, ללמוד משפטים באוניברסיטת לייפציג, וקיבל תואר ראשון בפילוסופיה בדצמבר 1662. ב-9 ביוני 1663 הוא הגן על עבודתו Disputatio Metaphysica de Principio Individui (המחלוקת המטאפיזית בעניין עקרון האינדיווידואציה) שדן בעקרון האינדיווידואציה. לייבניץ השיג את התואר השני בפילוסופיה ב-7 בפברואר 1664. הוא פרסם והגן על הדיסרטציה pecimen Quaestionum Philosophicarum ex Jure collectarum (אוסף של בעיות פילוסופיות על זכויות), בו טען לקשר תאורטי ופדגוגי בין פילוסופיה ומשפטים, בדצמבר 1664. אחרי שנה אחת של לימודי חוק, הוא השיג את התואר בוגר אוניברסיטה במשפטים ב-28 בספטמבר 1665. הדיסרטציה שלו נקראה De conditionibus.

בתחילת שנת 1666, בגיל 19, כתב לייבניץ את ספרו הראשון, על אמנות הקומבינציה (De Arte Combinatoria), אשר החלק הראשון שלו היה גם התזה שלו בפילוסופיה, והוא הגן עליה במרץ 1666. היעד הבא היה להשיג הרשאה ודוקטורט במשפטים, יעד שבדרך כלל דרש שלוש שנים נוספות של לימודים. ב-1666 סירבה האוניברסיטה בלייפציג לתת לו תואר דוקטור במשפטים עקב גילו הצעיר. בעקבות כך הוא עבר לאוניברסיטת אלטדורף, שבה התזה שלו סיפקה לו לא רק דוקטורט, אלא אף משרת פרופסור. לייבניץ דחה את ההצעה, בנימוק שיש לו תוכניות אחרות לעתיד.

כמבוגר, לייבניץ הציג את עצמו לעיתים קרובות כ"גוטפריד פון לייבניץ". הרבה מהדורות של כתביו הציגו את שמו על עמוד השער כ"פרייהר ג.ו. פון לייבניץ". אף על פי כן, שום מסמך רשמי לא נמצא אי פעם שייחס לו שייכות למעמד האצולה.

1674 - 1666

תחריט של גוטפריד וילהלם לייבניץ.

על אף שתחום לימודיו היה משפטים ופילוסופיה, את עבודתו הראשונה קיבל לייבניץ בשנת 1666 כפקיד בחברה אלכימאית בנירנברג. אף שלא היה לו ידע כלשהו באלכימיה הוא הציג עצמו כמלומד בתחום. לאחר זמן קצר הוא פגש את יוהאן כריסטיאן בוינבורג (1672 - 1622), השר הראשי המפוטר של מושל מיינץ יוהאן פיליפ משנבורן (von Schönborn). פון בוינבורג שכר את שירותיו של לייבניץ כעוזר, וזמן קצר לאחר מכן השלים עם המושל והציג את לייבניץ בפניו. לייבניץ הקדיש חיבור במשפטים למושל בתקווה להשיג אצלו משרה. האסטרטגיה עבדה; המושל ביקש מלייבניץ לעזור בכתיבה מחדש של הקוד החוקתי של האלקטורט. במהרה רכש את אמונו של המושל כשביצע עבורו עבודה משפטית מורכבת זו, וב-1669, הפך לייבניץ ליועץ של בית הדין לערעורים במיינץ. אף על פי שפון בוינבורג נפטר בסוף 1672, לייבניץ המשיך להיות מועסק על ידי אלמנתו עד שהיא פיטרה אותו ב-1674.

פון בוינבורג פעל רבות כדי לקדם את המוניטין של לייבניץ, שהמזכרים והמכתבים שלו החלו למשוך תשומת לב. אחרי שירותו בעבור המושל הוא זכה תוך זמן קצר למשרה דיפלומטית. תוך כדי כך, שלח לייבניץ הצעיר את ידו בפוליטיקה בינלאומית. הוא פרסם חיבור, תחת שם העט של אציל פולני אנונימי, המצדד (לא בהצלחה) במועמד הגרמני לכתר הפולני. הכוח העיקרי בגאופוליטיקה של אירופה במהלך חייו הבוגרים של לייבניץ היה שאיפותיו האמביציוזיות של מלך צרפת לואי ה-14, שגובו על ידי העוצמה הכלכלית והצבאית הצרפתית. באותו זמן, הותירה מלחמת 30 השנים אזורים עם אוכלוסייה גרמנית והולנדית באירופה, שאריותיה של האימפריה הרומית ה"קדושה", כשהם חבולים וחוששים מהצרפתים. לייבניץ הצעיר הציע להגן על חלקיה דוברי הגרמנית של אירופה באמצעות תוכנית הטעיה של לואי - הוא הצליח לשכנע את פטרונו, מושל מיינץ, לנסוע לפריז ולדבר אל לבם של יועצי הכתר הצרפתי כך שישתכנעו לפלוש למצרים, וזאת כצעד מפתח בדרך לכיבוש המושבות ההולנדיות שבמזרח הודו. בתמורה, אמורים היו הצרפתים להניח לגרמנים ולהולנדים באירופה. תוכנית זו זכתה לתמיכתו הזהירה של האלקטור. בשנת 1672 הוזמן לייבניץ על ידי הממשלה הצרפתית לפריז לדון בהצעתו, אך התוכנית הפכה עד מהרה ללא רלוונטית עם פרוץ מלחמת הולנד. את פלישתו הכושלת של נפוליאון למצרים בשנת 1798 ניתן לראות כמימוש מאוחר מדי, ולא מכוון, של תוכניתו של לייבניץ, שבא אחרי שהשליטה האירופית הקולוניאלית באזורים באסיה עברה מידיהם של ההולנדים לבריטים.

ה-Stepped Reckoner (מחשב הפסיעות) של לייבניץ.
... אין זה לכבודם של אנשי מעלה לשקוד על מלאכת החישוב שעה שאנשים פשוטים יותר יכולים לבצע את החישוב באותה מהימנות בעזרתה של מכונה."

- גוטפריד לייבניץ.

פריז הייתה אז אחד ממרכזי המדע והפילוסופיה, ולייבניץ נשאר בפריז במשך מספר שנים. זמן קצר לאחר שהגיע לשם, הוא פגש את המתמטיקאי והפיזיקאי ההולנדי כריסטיאן הויגנס, ונוכח לדעת שהידע שלו במתמטיקה ופיזיקה היה קטן ולא שיטתי. עם הויגנס כמנטור, הוא החל בתוכנית של לימוד עצמי שתוך זמן קצר דחפה אותו לעשות תרומות משמעותיות לשני התחומים, וביניהם הגילוי את הגרסה שלו של החשבון הדיפרנציאלי והאינטגרלי. הוא פגש גם את ניקולאס מלברנש (Nicolas Malebranche) ואת אנטואן ארנו (Antoine Arnauld), הפילוסופים הצרפתית המובילים של אותה עת, ולמד את עבודותיהם של דקארט ופסקל, כולל את הכתבים הלא מפורסמים שלהם. הוא רקם חברות קרובה עם המתמטיקאי הגרמני טשירנהאוסן (Ehrenfried Walther von Tschirnhaus); הם התכתבו במשך שארית חייהם. ב-1675 הוא מונה לחבר של כבוד מטעם האקדמיה הצרפתית למדעים.

כאשר התבהר שצרפת לא תממש את חלקה בתוכנית הפלישה למצרים של לייבניץ, האלקטור שלח מוקדם ב-1673 את אחיינו, בליווי של לייבניץ, לפגישה עם הממשלה האנגלית בלונדון, לצורך משימה הקשורה לתוכניתו של לייבניץ. שם לייבניץ ערך הכרות עם הנרי אולדנבורג וג'ון קולינס. הוא נפגש עם החברה המלכותית, בפניה הדגים מכונת חישוב שתכנן ובנה מאז 1670. המכונה הייתה מסוגלת לבצע את כל ארבע הפעולות החשבוניות הבסיסיות (חיבור, חיסור, כפל וחילוק), והחברה הפכה אותו עד מהרה לחבר חיצוני.

המשימה נסתיימה בפתאומיות כאשר חדשות על מותו של האלקטור (12 בפברואר 1673) הגיעו אליהם. לייבניץ חזר מיד לפריז ולא, כפי שתוכנן, למיינץ. מותם הפתאומי של שני הפטרונים שלו באותו החורף אותת שלייבניץ היה חייב למצוא בסיס חדש לקריירה שלו.

בעניין זה, ההזמנה שקיבל לייבניץ ב-1669 מג'ון פרדריק מברונסוויק לבקר את הנובר הוכחה בדיעבד כגורלית. לייבניץ דחה את ההזמנה, אבל החל להתכתב עם הדוכס מאז 1671. ב-1673, הדוכס הציע ללייבניץ משרה של יועץ. לייבניץ קיבל את ההצעה שנתיים מאוחר יותר, מאד בחוסר רצון, ורק אחרי שנעשה ברור שאין לו תעסוקה אפשרית בפריז, אשר מהגירוי האינטלקטואלי שלה הוא נהנה מאוד.

בית הנובר, 1716 - 1676

לייבניץ החליט לדחות את הגעתו להנובר עד סוך 1676 לטובת ביקור נוסף ללונדון, שם ניוטון האשים אותו שעיין באחד מכתביו הלא מפורסמים על החשבון הדיפרנציאלי והאינטגרלי. זה היה כביכול עדות שתמכה בהאשמה, עשורים רבים לאחר מכן, שלייבניץ גנב את החשבון הדיפרנציאלי והאינטגרלי מניוטון. במסעו חזרה מלונדון להנובר, לייבניץ עצר בהאג, שם הוא פגש את אנטוני ואן לוונהוק, המגלה של מיקרואורגניזמים. הוא גם בילה מספר ימים בדיון סוער עם שפינוזה, אשר זמן קצר לפני כן השלים את יצירת המופת שלו, האתיקה.

ב-1677, הוא קודם, בבקשתו, ליועץ בסוד לענייני צדק, משרה בה החזיק למשך שארית חייו. לייבניץ שירת שלושה שליטים עוקבים של בית ברונסוויק כהיסטוריון, יועץ פוליטי, ובאופן בולט מכל, כספרן של ספריית הדוכסות. הוא לפיכך התערב בכל העניינים הפוליטיים, היסטוריים ותאולוגיים הקשורים בבית ברונסוויק; המסמכים שנכתבו בתקופה זו מהווים חלק רב ערך של התיעוד ההיסטורי של תקופה זו.

בין האנשים היחידים בצפון גרמניה שקיבלו את לייבניץ הייתה האלקטורית סופיה מהנובר (1714 - 1630), ובתה סופיה שרלוטה מהנובר (1705 - 1668), מלכת פרוסיה ותלמידה המושבע, וקרולין, מרקיזת ברנדנבורג-אנסבך, סבתו של מלך בריטניה לעתיד ג'ורג' השני. בעבור כל אחד מהנשים האלו הוא היה מכותב, יועץ, וחבר, ובתמורה, הן כולן תמכו בלייבניץ יותר מאשר בני זוגם ומלך בריטניה לעתיד ג'ורג' הראשון.

האוכלוסייה של הנובר באותה עת מנתה בערך רק 10,000 איש, והפרובינציאליות שלה בסופו של דבר הפריעה ללייבניץ. אף על פי כן, להיות חצרן מרכזי בבית ברונסוויק היה כבוד של ממש, במיוחד לאור הצמיחה המטאורית ביוקרה של הבית במהלך שירותו של לייבניץ שם. ב-1692, הדוכס מברונסוויק הפך לאלקטור היורש של האימפריה הרומית ה"קדושה". חוק ההסדר הבריטי מ-1701 הועיד את האלקטורית סופיה וצאצאה כמשפחה המלכותית של אנגליה, לאחר גם שגם המלך ויליאם השלישי ואחותו בחוק ויורשתו, המלכה אן, נפטרו. לייבניץ מילא תפקיד מרכזי ביוזמות ובמשא ומתן שהוביל לפעולה הזו, אך לא תמיד פעל באופן אפקטיבי. לדוגמה, משהו שהוא פרסם באופן אנונימי באנגליה, במטרה לקדם את מטרות בית ברונסוויק, צונזר באופן רשמי על ידי הפרלמנט הבריטי.

בני בית ברונסוויק התייחסו בסבלנות למאמצים האינטלקטואליים האדירים שלייבניץ הקדיש לחקירות אינטלקטואליות שלא קשורות לחובותיו כחצרן, חקירות כגון ליטוש לכדי שלמות של החשבון הדיפרנציאלי והאינטגרלי, כתיבה על נושאים מתמטיים אחרים, לוגיקה, פיזיקה ופילוסופיה, ושמירה על תכתובת ענפה. הוא החל לעבוד על הקלקולוס ב-1674; העדות המוקדמת ביותר לשימוש בו במחברותיו ששרדו היא מ-1675. ב-1677 כבר הייתה ברשותו מערכת קוהרנטית, אך הוא לא פרסם אותה עד 1684. מאמריו המתמטיים החשובים ביותר של לייבניץ פורסמו בין השנים 1682 ו-1692, בדרך כלל בכתב עת אשר הוא ואוטו מנק ייסדו ב-1682, Acta Eruditorum. כתב עת זה שיחק תפקיד מפתח בקידום המוניטין המתמטי והמדעי של לייבניץ, אשר בתורו הגביר את הבולטות שלו בדיפלומטיה, היסטוריה, תאולוגיה ופילוסופיה.

התכתבויות, מאמרים והערות של לייבניץ מהשנים 1704 - 1669, הספרייה הלאומית של פולין.

האלקטור ארנסט אוגוסטוס הפקיד בידי לייבניץ את המשימה לכתוב היסטוריה של בית ברונסוויק, שתתחיל מזמנו של קרל הגדול או מוקדם יותר, בתקווה שהספר שייכתב יקדם את שאיפותיו השושלתיות. מ-1687 ל-1690, לייבניץ נסע רבות ברחבי גרמניה, אוסטריה ואיטליה, כשהוא מחפש ומוצא חומרי ארכיב הקשורים לפרויקט הזה. עשורים חלפו אך שום ספר היסטוריה לא הופיע; האלקטור הבא הפך נרגז מאד מהשיהוי לכאורה של לייבניץ. לייבניץ מעולם לא סיים את הפרויקט, במידה מסוימת בגלל התפוקה האדירה שלו בחזיתות רבות אחרות, אבל גם בגלל שהוא התעקש על כתיבה קפדנית של ספר מחקרי ומלומד בהתבסס על מקורות ארכיוניים, בעוד שפטרוניו היו שמחים אילו היה נכתב ספר פופולרי קצר - משהו שהוא קצת יותר מגנאלוגיה והערות עליה, שיושלם תוך שלוש שנים או פחות. הם מעולם לא ידעו שהוא למעשה לקח על עצמו חלק נכבד במשימה שרצו שתבוצע; כאשר החומרים שלייבניץ כתב ואסף על ההיסטוריה של ברונסוויק פורסמו בסופו של דבר במאה ה-19, הם מילאו שלושה כרכים.

ב-1708, ג'ון קייל, שכתב בכתב העת של החברה המלכותית ועם ברכתו של ניוטון, האשים את לייבניץ בגניבה ספרותית של הקלקולוס של ניוטון. כך החלה מחלוקת הקדימות על גילוי הקלקולוס אשר העיבה מאד על המשך חייו של לייבניץ. חקירה רשמית שנערכה על ידי החברה המלכותית, שנעשתה בדרישתו של לייבניץ להכחשה רשמית מצדה, העלתה את חמתו של קייל. ועידה זו פסקה לטובת ניוטון, אך יש לציין שאת הדוח המסכם של הוועדה כתב ניוטון עצמו. היסטוריונים של המתמטיקה שכתבו החל מ-1900 נטו לתמוך בלייבניץ, תוך הצבעה על ההבדלים בין הגרסאות של לייבניץ וניוטון לקלקולוס.

ב-1711, במהלך מסעותיו באירופה הצפונית, הצאר הרוסי פטר הגדול עצר בהנובר ופגש את לייבניץ, אשר כתוצאה לקח עניין מסוים בעניינים רוסיים במשך שארית חייו. ב-1712, לייבניץ החל במגורים במשך שנתיים בווינה, שם הוא מונה ליועץ הקיסרי המשפטי של בני הבסבורג. בעקבות מותה של המלכה אן ב-1714, האלקטור גאורג לודוויג הפך למלך בריטניה ג'ורג' הראשון, תחת התנאים של חוק ההסכמה 1701. אף על פי שלייבניץ עשה רבות למען התרחשותו של האירוע המשמח הזה, זאת לא הייתה שעת התהילה שלו. על אף השתדלותה של נסיכת ויילס, קרולין מאנסבך, ג'ורג' הראשון אסר על לייבניץ להצטרף אליו בלונדון עד שהוא ישלים לפחות כרך אחד על ההיסטוריה של בית ברונסוויק אשר אביו הפקיד בידיו לכתוב כשלושים שנה מוקדם יותר. יותר מכך, בעבור ג'ורג' הראשון, לכלול את לייבניץ במסעו ללונדון יהווה עלבון עבור ניוטון, שנתפס כמי שניצח בעימות הקדימות על הקלקולוס ושמעמדו בקרב מעגלים בריטיים רשמיים לא יכול היה להיות גבוה יותר. בסופו של דבר, חברתו ומגנתו האלקטורית האלמנה סופיה, נפטרה ב-1714.

מותו

לייבניץ נפטר בהנובר ב-1716; באותו זמן, הוא היה כל כך "מחוץ לאופנה" שלא ג'ורג' הראשון (שהזדמן לו להיות ליד הנובר באותו זמן) ושום חצרן אחר של בית ברונסוויק מלבד המזכיר שלו, נכחו בהלוויה. אף על פי שלייבניץ היה חבר בחברה המלכותית והאקדמיה למדעים בברלין, שני הארגונים לא ראו את זה כהולם מספיק לציין את מותו. קברו נותר לא מסומן במשך יותר מ-50 שנה. לייבניץ זכה להספד מצד פונטנל בפני האקדמיה למדעים בפריז, אשר מינתה אותו לחבר זר מטעמה ב-1700. ההספד נכתב בנוכחותה של דוכסית אורלינס, אחייניתה של האלקטורית סופיה.

חיים אישיים

לייבניץ מעולם לא נישא. הוא התלונן בהזדמנות מסוימת על מחסור בכסף, אך הסכום הנכבד שהוא הוריש ליורשו הבלעדי, בנה החורג של אחותו, הוכיח שבני בית ברונסוויק שילמו לו היטב. בשליחויותיו הדיפלומטיות הוא לעיתים קרובות התנהג בחוסר מצפון, התנהגות שהייתה נפוצה בקרב דיפלומטים מקצועיים בתקופתו. בהזדמנויות אחדות, לייבניץ תארך לאחור והחליף כתבי יד אישיים, פעולות שהציבו אותו באור שלילי במהלך עימות הקדימות על גילוי הקלקולוס. מאידך, הוא היה מקסים, אדיב מאוד, ולא בלי חוש הומור ודמיון. היו לו חברים ומעריצים רבים ברחבי אירופה. על השקפותיו הדתיות של לייבניץ, למרות שהוא נחשב על ידי ביוגרפים אחדים לדאיסט, נטען לעיתים קרובות שהוא היה גם תאיסט פילוסופי.

מתמטיקה

עמוד מתוך מאמרו של לייבניץ על המערכת הבינארית.

נוסף על תרומתו לאנליזה, תרם לייבניץ תרומות חשובות גם לענפים מתמטיים אחרים: קומבינטוריקה, אלגברה, גאומטריה, ותורת המספרים. באלגברה, הוא היה הראשון שהשתמש ברעיון של דטרמיננטה של מערכת משוואות לינאריות, וגילה כמה מעקרונות היסוד של תורת הדטרמיננטים, כגון התוצאות הידועות בשם נוסחת לייבניץ וכלל קרמר[3] (האחרון התגלה על ידו ב-1684). בגאומטריה הניח ב-1686 את היסודות לתאוריה של contiguity of curves, וביחד עם הויגנס פיתח את התאוריה של מעטפות של משפחת עקומים (בשנים 1692-1694). בתורת המספרים, הוכיח לייבניץ לראשונה תוצאה יסודית חשובה בתורת המספרים: המשפט הקטן של פרמה, ומאוחר יותר גילה גם את משפט וילסון, אך כתבי היד האלה נותרו לא מפורסמים, כך שלאונרד אוילר וז'וזף לואי לגראנז' הוכיחו את התוצאות האלה באופן בלתי תלוי. בקומבינטוריקה, היה לייבניץ הראשון שחקר והגיע למספר תוצאות על חלוקות של מספרים, בהם:[4] הנוסחה הרקורסיבית של אוילר לחלוקה של מספר n ל-k חלקים, ומספר מקרים פרטיים של הנוסחה הכללית לחלוקות שהתגלתה על ידי Stern ב-1840. לייבניץ ניסה לבסס את היסודות הלוגיים של החשבון האינפיניטסימלי, חקר את ההתכנסות של סכומים אינסופיים, והגדיר קריטריון להתכנסות טורים שנקרא כיום בשם מבחן לייבניץ. הוא טבע מונחים מתמטיים רבים, בהם: "דיפרנציאל", "פונקציה", "קואורדינטה", "אבסקיצה (abscissa)", "עקומים אלגבריים וטרנסצנדנטיים", ו"אלגוריתם". לייבניץ היה גם הראשון שגילה, באמצעות מניפולציות מתמטיות חדשניות לזמנו, את הזהות הבאה לקבוע המתמטי פאי (טור לייבניץ-גרגורי):

.

לייבניץ בנה[5] את המחשב המכני הראשון שהיה מסוגל להכפיל ולחלק מספרים אלה באלה, ועמל על פיתוח מחשב מכני שיוכל לחשב שורש ריבועי. הוא גם פיתח את הצורה המודרנית של השיטה הבינארית, שבה משתמשים מחשבים דיגיטליים בני ימינו.

חשבון אינפיניטסימלי

ערך מורחב – היסטוריה של החשבון האינפיניטסימלי

הזכות על המצאת החשבון האינפיניטסימלי מיוחסת בדרך כלל ללייבניץ יחד עם אייזק ניוטון, בשנות ה-70 של המאה ה-17. לפי רשימותיו, פריצת דרך משמעותית בעבודתו אירעה ב-11 בנובמבר 1675, כאשר הציג את החשבון האינטגרלי בפעם הראשונה כשחישב את השטח שתחת הפונקציה y=x. הוא הנהיג לראשונה כמה מהסימנים המוסכמים במתמטיקה עד היום, לדוגמה: סימן האינטגרל, המסמל S לטינית מוארכת, מהמילה "summa" (סכום, תמצית), וה-d המשמשת לדיפרנציאל מהמילה הלטינית "differentia" (הפרש). הסימון הזה נחשב למוצלח מאד עד ימינו. אולם עד שנת 1684, לא פרסם לייבניץ דבר בנושא החשבון האינפיניטסימלי. הכלל של גזירת מכפלה של פונקציות בחשבון אינפיניטסימלי עדיין נקרא "כלל לייבניץ". בנוסף, המשפט הקובע כיצד ומתי לבצע גזירה תחת סימן האינטגרל נקרא כלל האינטגרל של לייבניץ.

לייבניץ ניצל את תכונות האינפיניטסימלים, וערך עליהם מניפולציות באופן שהציע שיש להם תכונות אלגבריות פרדוקסליות. ג'ורג' ברקלי, בחיבור שנקרא "האנליסט" וגם בחיבורו De Motu, ביקר את התוצאות האלו. מחקר עכשווי טען שהקלקולוס של לייבניץ היה חופשי מסתירות פנימיות, ושהיה מבוסס יותר מהביקורות האמפיריות של ברקלי.

מ-1711 עד מותו היה לייבניץ מעורב במחלוקת קדימות עם ג'ון קייל, ניוטון ואחרים לגבי האם לייבניץ גילה את הקלקולוס באופן בלתי-תלוי בניוטון. תיאור מפורט של המחלוקת מופיע בערך מחלוקת לייבניץ - ניוטון.

השימוש באינפיניטסימלים במתמטיקה זכה לביקורת עזה על ידי ממשיכיו של קארל ויירשטראס, אך שרד במדע ובהנדסה, ואפילו במתמטיקה ריגורוזית, דרך האמצעי החישובי היסודי הידוע כדיפרנציאל. החל מ-1960, אברהם רובינזון עבד על בסיס ריגורוזי לאינפיניטסימלים של לייבניץ, באמצעות תורת המודלים, ובהקשר של hyperreal numbers. האנליזה הלא-סטנדרטית הנבנית בדרך זו ניתנת לראייה כהצדקה מאוחרת של צורת ההסקה המתמטית של לייבניץ. עקרון המעבר של רובינזון ניתן להבנה כמימוש של חוק הרציפות ההיוריסטי של לייבניץ, בעוד שפונקציית החלק הסטנדרטי מממשת את חוק ההומוגניות הטרסצנדנטי של לייבניץ.

Analysis situs - טופולוגיה

אריזת לייבניץ למעגלים, שלייבניץ תיאר את תהליך בנייתה במכתב, היא דוגמה מוקדמת לפרקטל. אריזת לייבניץ היא למעשה גרסה מוקדמת למשולש שרפינסקי - זוהי גרסה בה משולש שירפינסקי מורכב מקווים עקומים ולא ישרים.

לייבניץ היה הראשון שהשתמש במונח analysis situs, אשר מאוחר יותר במאה ה-19 השתמשו בו כדי להתייחס למה שכיום נקרא טופולוגיה. ישנן שתי עמדות לגבי המידה בה לייבניץ חזה את התחום. עמדה אחת מבוטאת על ידי החוקר Mates בצטטו מאמר בגרמנית מ-1954 של יאקוב פרוידנטל, שטוען:

על אף שעבור לייבניץ המצב של סדרה של נקודות נקבע לחלוטין לפי המרחק ביניהן ומוחלף אם המרחק ביניהם מוחלף, תומכו אוילר, במאמרו המפורסם מ-1736 המציג את הפתרון לבעיית הגשרים של קניגסברג והכללותיה, השתמש במונח geometria situs כדי להתייחס לתכונה שהמצב של הנקודות לא משתנה תחת דפורמציות טופולוגיות. הוא, באופן מוטעה, זוקף לזכות לייבניץ את הצגת המונח... זה לעיתים קרובות לא נהיר שלייבניץ השתמש במונח במובן שונה לחלוטין ולכן לא ניתן לייחס לו תרומה ראשונית לייסוד הענף.

מאידך, Hideaki Hirano טוען אחרת, ומצטט את מנדלברוט:

לחקור את עבודותיו המדעיות של לייבניץ זוהי חוויה מפכחת. מלבד החשבון האינפיניטסימלי, ומחשבות אחרות שלו שהובאו לידי שלמות, המספר והמגוון של תגליות מזהירות בכתביו הוא מדהים. ניתן למצוא דוגמאות ב-"אריזות" שהוא תיאר... שגעון לייבניץ שלי מתחזק שוב לנוכח העובדה שהגיבור שלו ייחס משמעות רבה לסקלה גאומטרית. בעבודתו "Euclidis Prota"..., שהיא נסיון לחזק את האקסיומות של אוקלידס, הוא קובע...:"יש לי מגוון הגדרות לקו הישר. הקו הישר הוא עקום, שכל חלק שלו דומה לכללותו, ולו בלבד יש את התכונה הזו, לא רק בין עקומים אלא גם בין קבוצות". את הטיעון הזה ניתן להוכיח בימינו אנו.

הגאומטריה הפרקטלית שקידם מנדלברוט התבססה על רעיון הדמיון-העצמי של לייבניץ ועל עקרון הרציפות שלו - "Natura non facit saltus". ניתן לראות שכאשר לייבניץ כתב, בנימה מטאפיזית: "הקו הישר הוא עקום, אשר כל חלק שלו דומה לשלם", הוא הקדים את זמנו בשתי מאות, וניבא במידת מה את הטופולוגיה המודרנית. בנוגע ל-"אריזות", לייבניץ כתב לחברו ועמיתו Des Bosses לדמיין מעגל, ואז לחסום בו שלושה מעגלים זהים עם רדיוס מקסימלי; לאחר מכן את הרווחים בין המעגלים הקטנים יותר ניתן למלא בשלושה מעגלים קטנים עוד יותר באמצעות אותו תהליך. את התהליך הזה ניתן להמשיך עד לאינסוף, וממנו ניתן לקבל רעיון טוב לגבי מהו דמיון-עצמי. השיפור של לייבניץ את האקסיומה של אוקלידס מכיל את אותו הרעיון.

מדע והנדסה

כתביו של לייבניץ נידונים בימינו, ובמיוחד בעשורים האחרונים, לא רק בשל החיזויים שלהם ותגליות אפשריות שעדיין לא זוהו, אלא גם כדרכים לקדם את הידע הנוכחי. רבים מכתביו על פיזיקה נכללים בספרו של גרהרדט "Mathematical Writings".

פיזיקה

לייבניץ תרם תרומה רבה לסטטיקה ולדינמיקה המתפתחת בתקופה, לעיתים קרובות תוך יציאה נגד ההשקפות של דקארט וניוטון. בכתביו תיאר לייבניץ תאוריה של תנועה המבוססת על אנרגיה קינטית ו-אנרגיה פוטנציאלית, אשר תיארה את המרחב כיחסי, בעוד שניוטון אחז בדעה איתנה שהמרחב הוא אבסולוטי. דוגמה חשובה לחשיבה הפיזיקלית המתקדמת של לייבניץ מופיעה בחיבורו Specimen Dynamicum מ-1695.

עד הגילוי של החלקיקים התת-אטומיים ומכניקת הקוונטים המושלת בהם, רבים מרעיונותיו הספקולטיביים של לייבניץ על היבטים של הטבע שאינם ניתנים לרדוקציה לסטטיקה ודינמיקה השפיעו במידה מועטה. לדוגמה, השערתו כי המרחב, הזמן והתנועה הם יחסיים ולא מוחלטים, היא כיום אבן יסוד בקוסמולוגיה המודרנית, ולייבניץ כתב: "לגבי דעתי, אני טענתי יותר מפעם אחת, שאני סובר כי המרחב הוא משהו יחסי בטבעו, כלומר שהוא דרגה של קיום סימולטני של ישויות, באותו אופן שהזמן מיוצג על ידי רצף של אירועים".

הדעות של לייבניץ עמדו בניגוד להשקפותיו של ניוטון. לפי התורה של ניוטון, מרחב וזמן קיימים בזכות עצמם, כישויות נפרדות. היחסיות של לייבניץ לעומת זאת, מתארת את המרחב והזמן כמערכת של יחסים שקיימים בין עצמים. עלייתה של תורת היחסות הכללית וההתפתחויות שלאחריה בהיסטוריה של הפיזיקה הציבו את השקפותיו של לייבניץ באור חיובי יותר.

אחד הפרויקטים המרכזיים של לייבניץ היה להחיות מחדש את תורת הכבידה של ניוטון כתאוריית מערבולות. מכתביו וממכתביו של לייבניץ ידוע כי התנגד לרעיונותיו של ניוטון בדבר הכבידה, וטען כי לשום כוח אין לייחס סגולות נסתרות, כמו משיכה בין גופים ללא מגע. אף על פי כן, הפרויקט של לייבניץ התקדם מעבר לניסיון זה, שכן בלבו עמד הניסיון להסביר את אחת הבעיות הקשות ביותר בפיזיקה, זו של הקוהזיה של החומר. בהקשר זה, לייבניץ יצא במאמרו "היפותזה פיזיקלית חדשה" מ-1670 נגד תמונת "החומר הפסיבי" המרכזית להשקפת העולם הקרטזית ותמך בתמונה דינמית של מבנה החומר כהסבר ל"תאחיזת החומר"[6]. במאמרו הציע לייבניץ לחקור את המבנה הנסתר, ה-"בלתי חדיר" והבלתי נדלה של החומר כאמצעי לגלות את המקור האמיתי לתופעות השונות. שאיפותיהם של פיזיקאים בני המאה ה-20 לפצח את המבנה התת-אטומי של החומר עלו בקנה אחד עם השקפה זו, וחשפו את האמת הדינמית (עם חלקיקים תת-אטומיים ונשאי כוח המעבירים את האינטראקציות) הבסיסית העומד ביסוד מבנה החומר.

כלל לייבניץ לנגזרות של מכפלות משמש כצעד חשוב בהוכחות רבות בתחומים מגוונים בפיזיקה. עקרון זהות הסמויים במכניקת הקוונטים. אלו שתומכים בפילוסופיה דיגיטלית, כיוון חדש יחסית בקוסמולוגיה, גם רואים בלייבניץ מעיין אב מייסד של הפילוסופיה.

ה-vis viva

"הכח החי" (בלטינית: vis viva) הוא mv2, פעמיים האנרגיה הקינטית של הגוף. לייבניץ סבר כי האנרגיה הכוללת נשמרת במערכות מכניות מסוימות, ועל כן החשיב את האנרגיה כמוטיב פנימי "מולד" של החומר. טענה זו נתפסה כמתחרה בהשקפה על מרכזיות חוק שימור התנע שהחזיקו בה ניוטון באנגליה ודקארט בצרפת, ועל כן נדחתה. כיום ברור שגם התנע וגם האנרגיה נשמרים, ושתי הגישות משלימות זו את זו.

תרומות אחרות לפיזיקה

לייבניץ פרסם מאמר חשוב במכניקה. במחקר המודרני נמצא כי הוא גילה את עקרון מאופרטיוס (מקרה פרטי של עקרון הפעולה המינימלית) ותוצאות שונות הקשורות בו בסביבות 1707, כ-37 שנים לפני עבודתם של מאופרטיוס ואוילר בתחום. הוא עשה גם תרומות בכמה תחומים ספציפיים יותר בפיזיקה: בתאוריה של האלסטיות ובתורת התנודות, וגילה גם נוסחה לחישוב החוזק של קורות (נוסחת לייבניץ).



מדעי החברה

בפסיכולוגיה, לייבניץ הציג את הרעיון של תת-מודע, ועשה את ההבחנה היסודית בין מצבים מודעים ומצבים לא מודעים. לחלק ניכר מהעבודה של לייבניץ היה השפעה רבה על התפתחות התחום. את העבודה שלו על התאמת תאוריית התודעה לעקרון הרציפות, כמו גם את הבחנותיו בנוגע לשינה, ניתן לראות כתאוריה מוקדמת של שלבי השינה. הוא האמין שעל פי העקרון שתופעות בטבע הן רציפות, זה קרוב לוודאי שלמעבר בין מצבים מודעים למצבים לא מודעים יש שלבי ביניים. אף על פי שרעיונותיו של לייבניץ בנוגע ל-"הרמוניה הקבועה מראש" נדחו על ידי רבים, פסיכולוגים רבים אימצו את רעיונותיו על psychophysical parallelism. הרעיונות האלה מתייחסים לבעיית הגוף ונפש, וקובעים כי התודעה והמוח לא משפיעים זה על זה, אלא חיים מראש בהרמוניה.

בפילוסופיה של התודעה, לייבניץ חזה רבים מההיבטים של הוויכוח המודרני הנוקב סביב הבעייתיות של התאמת מצבים תודעתיים למצבים פיזיקליים של המוח. לייבניץ טען כי אילו היינו יצורים זעירים שיכולים לטייל בנפתולי המוח, לא היינו מוצאים דבר שהיה מעיד על קיומה של תודעה. אחד הטיעונים המפורסמים שלו בהקשר זה הוא טיעון טחנת הרוח (Leibniz's windmill argument), שקובע בקצרה כי חווית התפיסה לא יכולה להיות מוסברת באמצעות כל מנגנון שהוא, מורכב ככל שיהיה, וזאת עקב היעדר נקודת מבט (viewpoint) שמעניקה צביון אחדותי למנגנוני התפיסה המכניים. נקודת מבט זו היא זו שאחראית לסובייקטיביות החוויה התפיסתית של המתבונן.

לייבניץ האמין כי לתודעה יש תפקיד פעיל ביותר בתפיסה, ושהיא משחקת תפקיד גדול מרכזי הרבה יותר בקלט החושי. הוא התמקד במיוחד בתפיסה, והבחין בין סוג התפיסה שאנו מודעים לה כגירוי, והסוג השני שאנו מודעים לו כתפיסה זרה. הוא טען שיש הרבה "petites perceptions" - תפיסות קטנות שאנו קולטים אך לא מודעים להן. לדוגמה, כאשר שק של אורז נקרע, אנו רואים את גרגרי האורז הנופלים אך לא בהכרח מודעים לכמה גרגרי אורז נצברים בערימה. לפי העקרון הזה, יש מספר אינסופי של תפיסות בתוכנו בכל זמן נתון אשר אנו לא מודעים אליהן. כדי שזה יהיה נכון, חייב להיות חלק של התודעה אשר אנו לא מודעים לו בזמן נתון. במקרה של שק האורז, איננו מסוגלים להיות מודעים במקביל לתהליך הנפילה של כל גרגר אורז, כך שהתודעה מצליחה "להתייחס" רק לשבריר מתוך כל גרגרי האורז. באופן הזה, את תאוריית התפיסה של לייבניץ ניתן לראות כאחת מני תאוריות רבות המובילות לרעיון הלא מודע. בנוסף, לרעיון של גירוי תת-ספי (subliminal stimuli) יש גם זרעים בתאוריה של לייבניץ על תפיסות קטנות. כמו כן, כשלייבניץ כתב בכתבים מסוימים על ה-"פריפריה של התודעה" (Periphery of consciousness), הוא גילה הבנה על האופן שבו החשיבה מאורגנת במוח וייתכן שאף (הדבר נתון לפרשנות) על המבנה הארגוני של המוח וחלוקת התפקידים של החלקים השונים בו.

רעיונותיו של לייבניץ בנוגע למוזיקה ותפיסה טונאלית השפיעו על הפסיכולוגיה הניסויית של וילהלם וונדט.

בתחום של בריאות ציבורית, הוא תמך בהקמת רשות רפואית אדמיניסטרטיבית עם אחיזה באפידמיולוגיה ורפואה וטרינרית. הוא עמל רבות כדי לקדם תוכנית אימון רפואית עם אוריינטציה על בריאות ציבורית ואמצעי מניעת מחלות. בכלכלה, הוא הציע רפורמות מס וסכמת ביטוח לאומי ודן באיזון המסחר (Balance of Trade). הוא אף תיאר בכתביו משהו שמזכיר את תורת המשחקים (בכתביו הוא סיפק אנליזות מתמטיות מפורטות למשחקים רבים, בהם משחקי קלפים ומשחקי לוח). בסוציולוגיה הוא הניח את היסודות לתורת התקשורת.

טכנולוגיה

מנוע הקיטור השני של פפין, 1707, שפותח בעזרתו של לייבניץ.

ב-1906, גרלנד פרסם כרך של כתבי לייבניץ בנוגע להמצאות הפרקטיות הרבות שלו ולעבודתו ההנדסית. נכון לעכשיו, מעט מאד מבין הכתבים האלו תורגמו לאנגלית. מכתביו, עולה כי לייבניץ היה ממציא רציני, עם כבוד רב להבטים הפרקטיים של החיים. כשהוא מיישם את המוטו שלו theoria cum praxi - "תאוריה הופכת למעשה", לייבניץ טען שתאוריה חייבת להיות משולבת עם התנסות ביישומים פרקטיים, ולכן הועלה על נס לפעמים כאבי המדע היישומי. הוא תכנן מדחפים מונעי רוח, משאבות מים[7], מכונות כרייה כדי להוציא שמן, מכבשים הידראוליים, מנורות, צוללות, אמצעי ניווט ימי, שעונים ועוד. הוא אף הציע שיטה להוצאת המליחות מן המים (התפלת מים). בהתכתבות עם דני פפן, הוא הגה[8] את הרעיונות התאורטיים העומדים בבסיס מנוע הקיטור, ויחד עמו תכנן את מנוע הקיטור הראשון. אף שהיה זה אב טיפוס פשוט למנוע הקיטור, הרעיונות שהדגים היו בין הגורמים שהתניעו את תחילת המהפכה התעשייתית.

בין השנים 1680 ל-1685 נאבק לייבניץ להתגבר על השטפונות הכרוניים באזור הרי הארץ, אך לא הצליח. לייבניץ ניסה לרתום את אנרגיית הרוח לכדי שימוש מעשי במכרות הרי ההארץ, וקיימים מתווים תכנוניים רבים שלו שנועדו לממש חזון זה (על אף שמבחינת לייבניץ, פרויקט הכרייה הזה הסתיים בכישלון). הוא תכנן אוטומציות רבות כדי לייעל את תהליך הכרייה, אך למרבה הצער רבות מההמצאות האלה לא היו יכולות לבוא לידי מימוש בזמנו. בין התכנונים והתרשימים הרבים שלו שתי דוגמאות[9] מהתחום של בקרה אוטומטית בולטות במיוחד: אלו הם התרשים שלו למכונה שתפנה באופן אוטומוטי את המפרשים של טחנת רוח לכיוון הרוח, והקונספציה שלו של מנגנון בלימה אוטומטי כדי לשלוט במהירות הסיבוב של המפרשים של טחנת רוח.

תורת החישוב

לייבניץ עשוי להיות מדען המחשב ותאורטיקן המידע הראשון. מוקדם בחייו, הוא המציא את מערכת המספרים הבינארית. הוא חזה את האינטרפולציה הלגרנז'יאנית ותורת המידע האלגוריתמית. לקלקולוס רציונליזטור שלו יש מאפיינים דומים לאלו של מכונת טיורינג אוניברסלית. ב-1934, נורברט וינר טען שהוא מצא בין כתבי לייבניץ תיאור של מושג המשוב, המרכזי לתאוריית הקיברנטיקה של וינר.

ב-1671, לייבניץ התחיל להמציא מכונה שתוכל לבצע את כל 4 הפעולות האריתמטיות, ובהדרגה שיפר אותה לאורך מספר שנים. מכונת החישוב שפיתח, מחשב הפסיעות (ה-stepped reckoner), משכה תשומת לב רבה והייתה הבסיס לבחירתו לחברה המלכותית ב-1673. מספר מכונות כאלה נעשו במהלך השנים שעשה בהנובר, בידי איש מלאכה שעבד תחת השגחתו של לייבניץ. זאת לא הייתה הצלחה מיידית כי לייבניץ לא הצליח להפוך למכני באופן מלא את פעולת הנשיאה (carry operation). ב-1674 לייבניץ עמל רבות כדי לבנות דגם "אנליטי" של מכונת החישוב שלו - מכשיר לקביעת הפתרונות של משוואות, ולמעשה הצליח לעשות זאת. אכן, חוקר בשם Couturat דיווח כי מצא כתב יד של לייבניץ משנת 1674 המתאר מכונה שמסוגלת[10] אף לבצע מספיק פעולות אלגבריות כדי לפתור משוואות (מכונה שנקראת Compas d'equation[11]). מכונה זו הייתה מעיין מחשב אנלוגי שפתר משוואות באמצעות שרטוט עקומים אלגבריים וחיתוך שלהם אחד עם השני, כך שנקודות החיתוך יהיו פתרונות המשוואה. כמו כן, ב-1693 חשף בפני הציבור תכנון של סוג חדש של אינטגרטור (מכונה שיכולה לפתור משוואות דיפרנציאליות). לייבניץ גם תכנן מכונת הצפנה (שכעת שוחזרה), שנתגלתה על ידי ניקולאס רשר ב-2010.

לייבניץ הלך וחתר בהדרגה לקראת מושגים של תוכנה וחומרה אשר פותחו רק הרבה יותר מאוחר על ידי צ'ארלס בבג' ועדה לאבלייס. ב-1679, בזמן שהרהר על האריתמטיקה הבינארית שלו, לייבניץ דמיין מכונה שבה מספרים בינאריים יהיו מיוצגים באמצעות גולות, הנשלטות באמצעות מיון ראשוני של כרטיסים מנוקבים. המכונה המופשטת שתיאר (בחיבורו De progressione Dyadica) עבדה ללא שימוש בגלגלי שיניים או גלילים - אלא רק באמצעות גולות, חורים (שלפי תיאורו יכולים להיות במצב "סגור" או "פתוח", באנלוגיה למעגל חשמלי שיכול להיות דלוק או כבוי), מקלות ותעלות להובלה של הגולות. המחשבים האלקטרוניים הדיגיטליים המודרניים מחליפים את הגולות של לייבניץ המונעות בידי הכבידה באוגרי הזזה, הפרשי מתח ופולסים של אלקטרונים, אבל המבנה הבסיסי ועקרון העבודה שלהם הוא בדיוק כפי שלייבניץ תיאר ב-1679.

ספרנות

במהלך שירותו כספרן בספריות הדוכסות שבהנובר ובוולפנבוטל, לייבניץ הפך לאחד המייסדים של מדעי המידע. הספרייה שבוולפנבוטל הייתה עצומה יחסית לתקופתה, שכן היא הכילה יותר מ-100,000 כרכים, ולייבניץ עזר לתכנן בניין חדש עבורה, אשר מאמינים כי הוא הבניין החדש שתוכנן במפורש להיות ספריה. הוא גם תכנן מערכת סידורית (indexing system) חדשה לספריות, לכאורה ללא שידע על קיומה של מערכת אחרת כזאת בספרייה הבודליינית שבאוקספורד. הוא גם קרא למוציאים לאור לערוך תקצירים של כל הכותרים החדשים שהם הפיקו בכל שנה בצורה סטנדרטית מסוימת שתקל על מלאכת הסידור. הוא קיווה שפרויקט התקצור הזה יכלול בסופו של דבר כל מה שהודפס מימיו שלו עד לתקופתו של גוטנברג. אף אחת מההצעות שלו לא השיגה הצלחה בתקופתו, אך משהו דומה להן הפך לפרקטיקה סטנדרטית בקרב מוציאים לאור בשפה האנגלית במהלך המאה ה-20, תחת חסותן של ספריית הקונגרס והספרייה הבריטית.

הוא קרא לייסוד של בסיס נתונים אמפירי כדרך לקדם את כל המדעים. רעיונות שלו כמו השפה האוניברסלית, הקלקולוס רציוסינטור, ו-"קהילת התודעות" - נועדו, בין היתר, להביא אחדות פוליטית ודתית לאירופה. ניתן לראות בהם גם חיזוי לא מכוון של שפות מלאכותיות (כמו אספרנטו והמתחרות שלה), לוגיקה סימבולית, ואף הרשת הכלל עולמית.

קידום חברות מדעיות

לייבניץ הדגיש שמחקר הוא משימה שיתופית. לכן הוא תמך בהתלהבות בהקמה של חברות מדעיות לאומיות לפי קווים דומים לזה של החברה המלכותית הבריטית והאקדמיה הצרפתית המלכותית למדעים. באופן יותר ספציפי, בהתכתבויותיו ומסעותיו הוא דחף להקמת חברות כאלה בדרזדן, סנט פטרסבורג, וינה וברלין. רק פרויקט אחד מבין אלה הגיע לשלב המעשה: ב-1700, האקדמיה למדעים בברלין הוקמה. לייבניץ היה אחראי על הקמת האקדמיה, ושירת כנשיא שלה במשך שארית חייו. אקדמיה זו הפכה מאוחר יותר לאקדמיה הגרמנית למדעים, המוציאה לאור של המהדורה הקריטית של כתביו.

משפטים ומוסר

פרט למקרים החריגים של מרקוס אורליוס וניקולו מקיאוולי, קרוב לוודאי שלאף פילוסוף אחר לא היה ניסיון מעשי בעניינים הקשורים למדיניות ולפוליטיקה כמו ללייבניץ. כתביו של לייבניץ על משפטים, אתיקה ופוליטיקה לא זכו תקופה ארוכה לתשומת לבם של מלומדים דוברי אנגלית, אך מצב זה השתנה לאחרונה.

לייבניץ לא תמך במונרכיה אבסולוטית כמו שהובס תמך בה, או בעריצות בכל צורה שהיא. הוא גם לא דגל בהשקפותיו של בן תקופתו ג'ון לוק בנושאים פוליטיים וחוקתיים, שתמך בדמוקרטיה באמריקה של המאה ה-18 ומאוחר יותר בכל מקום אחר. קטע ממכתב מ-1695 לפיליפ, בנו של הברון בוינבורג, מבטא את השקפתו הפוליטית של לייבניץ:

"ולגבי ... השאלה הגדולה בעניין כוחם של שליטים והצייתנות הנדרשת מעמם, אני בדרך כלל מצדד בכך שיש לשכנע את השליטים שלעם ישנה זכות להתנגד להם, ומאידך יש לשכנע את העם לציית לשלטון באופן פסיבי. למרות זאת, אני תומך בדעתו של גרוטיוס, שאדם ככלל צריך לציית לשלטון, ושהרע במהפכה גדול באופן ניכר מהעוולות שמהם נגרמת המהפכה (כלומר מהרע שנובע מעוולות השלטון). עדיין אני מכיר בכך ששליט יכול לעבור סף ולהגזים בעוולות שלטונו, ובכך להציב את המדינה בסכנה כזאת שתחייב את העם לעצור אותו. מצב זה הוא אמנם נדיר מאוד, אך תאולוגים שמתירים התנגדות אלימה בסיטואציה כזאת חייבים להישמר מאיבוד שליטה ומאיבוד הסדר הציבורי. הפעלה של כוח התנגדות בעוצמה חריגה מסוכנת הרבה יותר מאי פעולה."

ב-1677, קרא לייבניץ להקמתה של קונפדרציה אירופית, שתנוהל בידי מועצה או סנאט, שחבריו ייצגו אומות שלמות ויהיו חופשיים להצביע על-פי מצפונם. קריאה זו נחשבת לעיתים לחיזוי של האיחוד האירופי. לייבניץ האמין שאירופה תאמץ דת אחידה. הוא חזר על הצעות אלה ב-1715.

אך בה בעת הוא הציע להתחיל פרויקט בין-דתי ורב-תרבותי ליצירת מערכת אוניברסלית של ערכי צדק ומוסר, הצעה שדרשה ממנו הסתכלות אינטרדיסציפלינרית רחבה. כדי לגבש הצעה זו, הוא שילב בין רעיונות בלשניים, פילוסופיה של המוסר, פילוסופיה של המשפט, כלכלה ופוליטיקה.

אקומניזם

לייבניץ השקיע מאמץ אינטלקטואלי ודיפלומטי רב במה שנקרא שליחות אקומניסטית - ניסיון לקרב בין כתות או זרמים שונים בנצרות במטרה להביא את הנצרות לאחדות. במסגרת שליחות זו לייבניץ ניסה תחילה ליישב את המחלוקות בין הכנסייה הקתולית והכנסייה הלותרנית, ומאוחר יותר לקרב בין הכנסייה הלותרנית והרפורמית. מבחינה זו, הוא המשיך את דרכם של הפטרונים הראשונים שלו, הברון פון בוינבורג וג'ון פרדריק - שניהם לותרנים מעריסתם שהמירו דתם לקתולית כמבוגרים - ושעשו מה שיכלו כדי לאחד מחדש את שתי האמונות, ושבירכו על שליחויות כאלה מצד אחרים (בית ברונסוויק נשאר לותרני בגלל שילדיו של הדוכס לא המירו דתם כמו אביהם). המאמצים האלו כללו תיאום פעולה עם הבישוף הצרפתי ז'אק-בנין בוסואה, ועירבו את לייבניץ במחלוקת תאולוגית מסוימת. קרוב מאד לוודאי שלייבניץ סבר שיישום יסודי של ההגיון למחלוקות תאולוגיות יוכל לרפא את הפילוג שנוצר ברפורמציה.



פילולוגיה

לייבניץ הפילולוג היה חוקר נלהב של שפות, והיה להוט ללקט כל מידע על אוצר מילים ודקדוק שנקרה בדרכו. הוא הפריך את האמונה, אשר הייתה נפוצה בקרב מלומדים נוצרים בתקופתו, שעברית הייתה השפה הראשונית של האנושות. הוא גם הפריך את האמונה, שפותחה על ידי מלומדים שוודים בתקופתו, שצורה של פרוטו-שוודית הייתה האב הקדמון של השפות הגרמניות. הוא תהה על המקורות של השפות הסלאביות, היה מודע לקיום של שפת הסנסקריט, והיה מוקסם מסינית קלאסית.

סינופיל

דיאגרמה של אי צ'ינג.

לייבניץ היה אולי האינטלקטואל האירופי המשמעותי הראשון שגילה עניין רב בציוויליזציה הסינית, אשר אותה הוא הכיר באמצעות התכתבויותיו, וקריאת העבודות של מיסיונרים נוצרים אירופאים שהוצבו בסין. לאחר שקרא את Confucius Sinarum Philosophus ("חייו ועבודותיו של קונפוציוס"), מאת האב פיליפ קוּפְּלֵה (Philippe Couplet) והאב פְּרוֹסְפֶּרוֹ אינטוֹרְצֶ'טַה (Prospero Intorcetta), משנת 1687 בשנה הראשונה לפרסומו, הוא הסיק שהאירופאים יוכלו ללמוד רבות מהמסורת האתית הקונפוציאנית. הוא הרהר על האפשרות שהכתבים הסיניים היו צורה לא מכוונת של הקרקטריסטיקה האוניברסלית. הוא הוקסם מהבחנתו שלו שהקסגרמות האי צ'ינג תואמות[דרושה הבהרה] למספרים הבינאריים מ-000000 ל-111111, והסיק שהמיפוי הזה היה עדות להישגים מתמטיים סיניים משמעותיים בתחום של הפילוסופיה המתמטית שהוא כה העריך.

משיכתו של לייבניץ לפילוסופיה סינית נבעה מהתפיסה שלו שהפילוסופיה הסינית דמתה לשלו. ההיסטוריון E.R. Hughes הציע שרעיונותיו של לייבניץ על "חומר פשוט" ו-"ההרמוניה שנקבעה מראש" הושפעו ישירות מקונפוציאניזם, והצביע על העובדה שרבים מהרעיונות האלו נהגו בתקופה שבה קרא את החיבור Confucius Sinarum Philosophus.

איש אשכולות

במהלך סיורו הארוך בארכיבים אירופיים, שנועד לתעד את ההיסטוריה של משפחת ברונסוויק (משימה שהוא מעולם לא השלים), הוא עצר בווינה בין מאי 1688 לפברואר 1689, שם הוא עשה עבודה דיפלומטית ומשפטית רבה בעבור בני בית ברונסוויק. הוא ביקר במכרות, דיבר עם מהנדסי מכרות, וניסה לשאת ולתת על חוזי ייצוא עופרת ממכרות הדוכס שבהרי ההארץ. הצעתו שרחובות וינה יוארו במנורות השורפות שמן לפתית יושמה. לייבניץ מילא תפקיד מרכזי בפוליטיקה והדיפלומטיה האירופאית של תקופתו. בשירותו של הנסיך של מיינץ חיבר כמה חיבורים משפטיים חשובים, ביניהם "ההצעה לרפורמה של לימודי המשפטים" ו"יסודות של משפט אזרחי". במהלך פגישתו עם הקיסר האוסטרי ובמזכרים שלאחר מכן, לייבניץ הציע לארגן מחדש את הכלכלה האוסטרית, לערוך רפורמה בשיטת המטבע של חלקים ניכרים במרכז אירופה, לשאת ולתת על קונקורדט בין בני הבסבורג והותיקן, וליצור ספריית מחקר אימפריאלית, ארכיון רשמי, וקרן ביטוח ציבורי. הוא כתב ופרסם מאמר חשוב על מכניקה.

לייבניץ גם כתב מאמר קצר, Primae veritates, שפורסם לראשונה בידי Louis Couturat ב-1903, המסכם את השקפותיו על מטאפיזיקה. המאמר לא מתוארך; השאלה אם כתב את המאמר בווינה ב-1689 הוכרעה רק ב-1999, כאשר המהדורה הקריטית שיצאה פרסמה בסופו של דבר רק את הכתבים הפילוסופיים שלו מהשנים 1690 - 1677. קריאתו של Couturat הייתה נקודת ההתחלה של רבים מזרמי המחשבה על לייבניץ במאה ה-20, במיוחד בקרב פילוסופים אנליטיים. עם זאת, אחרי מחקר קפדני של כל כתביו הפילוסופיים של לייבניץ עד ל-1688 - מחקר שהתאפשר אודות לפרסום המהדורות האחרונות של כתביו - Mercer (ב-2001) פירש בצורה מעט שונה את כתביו של לייבניץ.

מוניטין שלאחר המוות

כמתמטיקאי וכפילוסוף

כשלייבניץ נפטר, המוניטין שלו היה בדעיכה. הוא היה זכור רק בשל ספר אחד, התאודיציאה, אשר הטיעון המרכזי שלו הפך למושא ללעג על ידי וולטר בספרו הפופולרי קנדיד, אשר מסתיים בכך שהדמות קנדיד אומרת, "Non liquet" (אין זה ברור), מונח שנעשה בו שימוש במהלך תקופת הרפובליקה הרומית לציון פסק דין חוקי של "לא מוכח". התיאור של וולטר את הרעיונות של לייבניץ היה כה משפיע שרבים האמינו שהוא תיאור מדויק. על כן וולטר וקנדיד שלו נושאים באשמה לכישלון המתמהמה להבין ולהעריך את הרעיונות של לייבניץ. ללייבניץ היה תלמיד נלהב, כריסטיאן וולף, אשר השקפתו הדוגמתית והקלה גרמה למוניטין של לייבניץ נזק רב. הוא גם השפיע על דיוויד יום שקרא את תאודיציאה והשתמש בכמה מרעיונותיו. בכל מקרה, האופנה הפילוסופית נעה הרחק מהרציונליזם והלוגיקה השיטתית של המאה ה-17, אשר לייבניץ היה מייצג כה בולט שלה. עבודתו על משפט, דיפלומטיה והיסטוריה נתפסה כמעוררת עניין בר חלוף. ההיקף והעושר של ההתכתבות שלו לא זוהה.

בחלקים ניכרים מאירופה הוטל ספק בכך שלייבניץ גילה את הקלקולוס באופן בלתי תלוי בניוטון, ולכן עבודתו כולה במתמטיקה ופיזיקה נזנחה. וולטר, שהיה מעריץ של ניוטון, כתב את קנדיד גם מסיבה נוספת, והיא כדי לפגוע באמינות טענתו של לייבניץ לכך שגילה את הקלקולוס ובטענתו שהיסודות של תורת הכבידה העולמית של ניוטון אינם נכונים.

מצעדו הארוך של לייבניץ לתהילתו הנוכחית החל בפרסום משנת 1765 של חיבורו Nouveaux Essais, אשר קאנט קרא לעומק. ב-1768, Louis Dutens ערך את המהדורה רבת הכרכים הראשונה של כתבי לייבניץ, אשר לאחריה הופיעו במאה ה-19 מספר רב של מהדורות, כולל אלו שנערכו על ידי Erdmann, Foucher de Careil, Gerhardt, Gerland, Klopp, ו- Mollat. פרסום של ההתכתבות של לייבניץ עם דמויות ראויות לציון כמו אנטואן ארנולד, סמואל קלארק, סופיה מהנובר ובתה, החל.

ב-1900, ברטראנד ראסל פרסם מחקר קריטי של המטאפיזיקה של לייבניץ. זמן קצר לאחר מכן, Louis Couturat פרסם מחקר חשוב על לייבניץ, וערך גם כרך של כמה מכתביו הלא מפורסמים של לייבניץ, בעיקר אלו שעוסקים בלוגיקה. כתבים אלו הקנו ללייבניץ מעמד של כבוד בקרב הפילוסופים האנליטיים והלינגוויסטיים בעולם דובר האנגלית (לייבניץ כבר היה בעל השפעה רבה על גרמנים רבים, כולל ברנהרד רימן). לדוגמה, הביטוי שלייבניץ טבע salva veritate, שמשמעותו ניתנות להמרה מבלי לשנות את ערך האמת, מופיע בכתביו של וילארד קווין. אף על פי כן, הספרות המשנית על על לייבניץ לא פרחה באמת עד אחרי מלחמת העולם השנייה.

Nicholas Jolley שיער שהמוניטין של לייבניץ כפילוסוף הוא כעת אולי גבוה יותר מאשר בכל תקופה שהיא מאז שלייבניץ חי. פילוסופיה אנליטית ועכשווית ממשיכה להחיות את הרעיונות שלו על זהות, אינדיווידואליות, ועולמות אפשריים. עבודה שנעשתה על תולדות הרעיונות במאות ה-17 וה-18 חשפה יותר בבירור את "המהפכה האינטלקטואלית" שקדמה למהפכות התעשייתיות והמסחריות הידועות יותר של המאות ה-18 וה-19, אשר לייבניץ מילא תפקיד מרכזי בה.

ב-1985, הממשלה הגרמנית יצרה את פרס לייבניץ, שמציע פרס כספי שנתי של 1.55 מיליון יורו לתוצאות ניסוייות ו-770,000 יורו לתוצאות תאורטיות. זהו הפרס הגבוה בשוויו בעולם להישגים מדעיים.

כתביו

לייבניץ כתב בעיקר בשלוש שפות: לטינית סכולסטית, צרפתית וגרמנית. במהלך חייו, הוא פרסם מספר רב של פמפלטים ומאמרים סכולסטיים, אבל רק שני ספרים "פילוסופיים", האמנות הקומבינטורית ותיאודיציאה (הוא פרסם מספר פמפלטים, לעיתים קרובות באופן אנונימי, מטעמו של בית Brunswick-Lüneburg, ובמיוחד ראוי לציון החיבור "De jure suprematum", דיון מעמיק בטבע של הריבונות). ספר חשוב אחד שלו פורסם לאחר מותו - מאמרים חדשים על התבונה האנושית, אשר לייבניץ מנע מלפרסם אותו עד מותו של ג'ון לוק. רק ב-1895, כאשר Bodemann השלים את הקטלוג שלו של כתבי לייבניץ, ההיקף העצום של הנכלאס של לייבניץ התבהר: בערך 15,000 מכתבים ליותר מ-1000 נמענים ועוד יותר מ-40,000 כותרים אחרים. יותר מכך, מספר לא קטן מהמכתבים האלה הם באורך חיבור. חלק ניכר מההתכתבות שלו, במיוחד המכתבים שמתוארכים לאחרי 1700, נותר לא מפורסם, וחלק ניכר ממה שכן פורסם פורסם רק בעשורים האחרונים. הכמות, המגוון, וחוסר הסדר של כתבי לייבניץ הם תוצאה צפויה של המצב בו היה נמצא, אותו תיאר במכתב באופן הבא:

אני לא מסוגל לומר לך עד כמה פזור דעת אני. אני מנסה למצוא מגוון דברים בארכיב; אני מביט בכתבים ישנים וצד מסמכים לא מפורסמים. מאלו אני מנסה לשפוך מעט אור על ההיסטוריה של בית ברונסוויק. אני מקבל ועונה למספר עצום של מכתבים. באותו הזמן, יש לי כל כך הרבה תוצאות מתמטיות, מחשבות פילוסופיות, וחידושים ספרותיים אחרים שאסור להרשות להם להיעלם, שאני לא יודע אפילו מאיפה להתחיל.[13]

החלקים הנגישים במהדורה הקריטית[14] של כתבי לייבניץ מאורגנים באופן הבא:

  • סדרה 1. התכתבויות פוליטיות, היסטוריות, והתכתבויות כלליות. 25 כרכים., 1666 - 1706.
  • סדרה 2. התכתבויות פילוסופיות. 2 כרכים., 1663 - 1700.
  • סדרה 3. התכתבויות מתמטיות, מדעיות וטכניות. 8 כרכים., 1672 - 1698.
  • סדרה 4. כתבים פוליטיים. 7 כרכים., 1667 - 1699.
  • סדרה 5. כתבים היסטוריים ובלשניים.
  • סדרה 6. כתבים פילוסופיים. 7 כרכים., 1663 - 1690.
  • סדרה 7. כתבים מתמטיים. 6 כרכים., 1672 - 1676.
  • סדרה 8. כתבים מדעיים, רפואיים וטכניים. כרך אחד., 1668 - 1676.

הקטלוג השיטתי של הנכלאס של לייבניץ החל ב-1901. הקטלוג נעשה קשה ביותר עקב שתי מלחמות העולם ועשורים של חלוקת גרמניה במהלך המלחמה הקרה על ידי מסך הברזל, שהפריד בין מלומדים, ופיזר חלקים של המורשת הספרותית שלו. הפרויקט השאפתני היה צריך להתמודד עם מלל בשבע שפות המוכל ב-200,000 עמודים של דף מודפס ובכתב יד. ב-1985 הפרויקט התארגן מחדש ונכלל בתוכנית משותפת של אוניברסיטאות פדרליות ומחוזיות בגרמניה. מאז הסניפים בפוטסדאם, מינסטר, הנובר וברלין פרסמו במשותף 57 כרכים של כתביו, עם ממוצע של 870 עמודים לכרך, והכינו אינדקס וקונקורדנציה של כתביו.

עבודות נבחרות

  • על אמנות הקומבינציה (1666)
  • היפוטיזה פיזיקלית חדשה (1671)
  • שיטה חדשה למקסימום ומינימום (1684)
  • הרצאה על המטפיזיקה (1686)
  • הסבר החשבון הבינארי (1703)
  • מאמרים חדשים על התבונה האנושית (1705)
  • תיאודיציאה (1710)
  • המונדולוגיה (1714)
  • תרגום: השיטה החדשה וכתבים אחרים על תורת המונדות, תרגום יוסף אור, עריכה י. ח. רות, 1931 ירושלים, הוצאת מאגנס

הנצחה

על שמו של לייבניץ נקרא ביסקוויט לייבניץ, למרות שהקשר היחיד בין השניים הוא העיר הנובר, שבה ממוקמים מפעלי החברה ושלייבניץ הוא אחד מבניה המפורסמים ביותר.

לקריאה נוספת

  • "גוטפריד וילהלם לייבניץ – פרק מתוך ה'תיאודיציה': 'מחשבות על הספר שפרסם מר הובס באנגלית על החופש, על ההכרח ועל המקריות'" (מצרפתית: אביבה ברק), דחק - כתב עת לספרות טובה, כרך ה', 2015.

קישורים חיצוניים

הערות שוליים

  1. ^ (אנ')
  2. ^ (אנ')
  3. ^ Combinatorics: Ancient & Modern [1]
  4. ^ THE MATHEMATICAL STUDIES OF G,Ws LEIBNIZ ON COMBINATORICS [2]
  5. ^ Leibniz On His Calculating Machine [3]
  6. ^ המונח שימש בעבר כדי לתאר את הדבר אשר מחזיק את החומר ביחד ומונע ממנו להתפרק לחתיכות
  7. ^ המזרקות המפורסמות בגני הרנהאוזן שבהנובר מבוססות על רעיונות של לייבניץ.
  8. ^ Leibniz, Papin, and The Steam Engine[4]
  9. ^ Gottried Wilhelm Leibniz Bibliothek [5]
  10. ^ עמודים 108-109 ,the tangled origins of the leibnizian calculus [6]
  11. ^ המכונה לא התבססה רק על גלגלי שיניים, אלא גם על רכיבים נוספים שלייבניץ המציא במיוחד למטרה זו. קישור לסקיצה של המכונה מופיע פה: [7]
  12. ^ A good introductory discussion of the "characteristic" is Jolley (1995: 226–40). An early, yet still classic, discussion of the "characteristic" and "calculus" is Couturat (1901: chpts. 3,4).
  13. ^ Letter to Vincent Placcius, 15 September 1695, in Louis Dutens (ed.), Gothofridi Guillemi Leibnitii Opera Omnia, vol. 6.1, 1768, pp. 59–60.
  14. ^ www.leibniz-edition.de


פילוסופיה
תחומים
אונטולוגיהאסתטיקהאפיסטמולוגיהאתיקהלוגיקהמטאפיזיקהמטאפילוסופיהמטא-אתיקהפילוסופיה פוליטיתפילוסופיה של ההיסטוריהפילוסופיה של החינוךפילוסופיה של הלשוןפילוסופיה של המדעפילוסופיה של המתמטיקהפילוסופיה של הנפשפילוסופיה של הפסיכולוגיהתאולוגיהפילוסופיה של המשפטפילוסופיה של המוזיקהפילוסופיה של הקולנוע
זרמים/אסכולות
דאואיזםהאסכולה הפיתגוראיתהאסכולה האלאטיתהאסכולה האטומיסטיתמוהיזםלגליזםנטורליזםהאסכולה הפריפטטיתהאסכולה הסטואיתהאסכולה הציניתנאופלאטוניזםהאסכולה האפיקוראיתקונפוציאניזםסכולסטיקהרציונליזםאמפיריציזםאקזיסטנציאליזםפילוסופיה של הדיאלוגנאו-קונפוציאניזםפנומנולוגיהפילוסופיה אנליטיתפרגמטיזםפוסט-סטרוקטורליזםפילוסופיה בודהיסטיתפילוסופיה הינדואיסטיתפילוסופיה ג'ייניסטיתפילוסופיה יהודית
אישים בולטים
פילוסופים של העת העתיקה לאו דזהקונפוציוסתאלספיתגורסהרקליטוסמו דזההבודההפרמנידספרוטגורסדמוקריטוססוקרטסאפלטוןאריסטוזנון מקיטיוןטימון מפליוספירון מאליספלוטינוססון דזהמנציוסשו'ן קואנגג'ואנג דזהנגרג'ונה
פילוסופים של ימי הביניים שנקרהאוגוסטינוסג'ון סקוטוס אריגנהאבן סינאאבן רושדג'ו שידוגןתומאס אקווינסויליאם איש אוקאם
פילוסופים מודרניים ניקולו מקיאווליתומאס הובספרנסיס בייקוןרנה דקארטברוך שפינוזהגוטפריד לייבניץג'ון לוקג'ורג' ברקלידייוויד יוםז'אן-ז'אק רוסועמנואל קאנטג'רמי בנת'םגאורג וילהלם פרידריך הגלג'ון סטיוארט מילארתור שופנהאוארסרן קירקגורקרל מרקספרידריך ניטשה
פילוסופים בני המאה ה-20 גוטלוב פרגהג'ון דיואיאדמונד הוסרלברטראנד ראסללודוויג ויטגנשטייןמרטין היידגררודולף קרנפקרל פופרקרל המפלז'אן-פול סארטרחנה ארנדטעמנואל לוינססימון דה בובוארוילארד ואן אורמאן קווייןאלבר קאמיג'ון רולסתומאס קוןז'יל דלזמישל פוקויורגן הברמאסז'אק דרידהמרתה נוסבאוםג'ודית באטלר
מונחים
מונחים בסיסיים אינסוףאמת ושקראפוסטריוריאפריורידיאלקטיקההנחהזמןחומר ורוחחוק הזהותטוב ורעישותכשל לוגילוגוסמהותמציאותסיבתיותערךפרדוקסצדקתכונהיום הפילוסופיה העולמי
תאוריות/תפיסות אגואיזם אתיאוניברסליזםאימננטיותאינטואיציוניזםאמנה חברתיתבחירה חופשיתבעיית הראוי-מצויהבעיה הפסיכופיזיתדאונטולוגיהדואליזםנהנתנותהוליזםהיסטוריציזםהרצון לעוצמההשכל הפועלטיעון השפה הפרטיתכשל נטורליסטילוגיציזםמטריאליזםמוניזםמונאדהמכניזםנטורליזם מטאפיזיניהיליזםנומינליזםסובייקטיביזםסוליפסיזםספקנותעל-אדםעשרת הכבליםפוזיטיביזםפטליזםפנאנתאיזםפנתאיזםהפרא האצילהצו הקטגוריהקוגיטוריאליזםרדוקציוניזםרלטיביזםתועלתנותתערו של אוקאם
פורטל פילוסופיה