טור (מתמטיקה)

מתוך המכלול, האנציקלופדיה היהודית
(הופנה מהדף טור חשבוני)
קפיצה לניווט קפיצה לחיפוש

בערך זה
נעשה שימוש
בסימנים מוסכמים
מתחום המתמטיקה.
להבהרת הסימנים
ראו סימון מתמטי.

במתמטיקה מושג הטור מציין את סכומה של סדרה, שיכולה להיות סדרת מספרים, וגם סדרה של פונקציות. למשל, הוא טור שסכומו 6. נהוג להבדיל בין שני סוגי טורים עיקריים: טור סופי וטור אינסופי. המתמטיקאי היווני הקדום ארכימדס (נפטר ב-212 לפני הספירה) חישב, לראשונה ככל הידוע, סכום של טור אינסופי.

תנאי הכרחי להתכנסות טור אינסופי הוא שהאיבר הכללי ישאף לאפס.

טורים סופיים

טורים סופיים אינם אלא דרך מקוצרת לרשום בה חיבור של איברים רבים. באופן כללי, הסימון המקוצר עבור הסכום הוא באמצעות האות היוונית סיגמא, בסימון זה: כאשר הוא מספר האיברים, ו- הוא אינדקס העובר על הערכים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1,2,...,n} .

ישנם כמה סוגי טורים הראויים להתייחסות מיוחדת:

טור חשבוני

טור חשבוני הוא סכומה של סדרה חשבונית. סכום זה שווה למכפלת חצי מספר האיברים בסכום האיבר הראשון והאחרון: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^n a_k=\frac{n(a_1+a_n)}{2}} (ראו בעניין זה "אנקדוטה אודות קרל פרידריך גאוס").

טור טלסקופי

טור טלסקופי הוא כינוי לכל טור בו מצטמצמים כל האיברים למעט האיבר הראשון והאחרון, עובדה המקלה על חישוב סכומם. נסתכל למשל בטור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdots+\frac{1}{(n)\cdot (n+1)}} , שבו האיבר ה-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{k\cdot(k+1)}} . מכיוון ש- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{k}-\frac{1}{k+1}=\frac{k+1-k}{k\cdot(k+1)}=\frac{1}{k\cdot(k+1)}} , סכום n האיברים הראשונים הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+...+\left(\frac{1}{n-1}-\frac{1}{n}\right)+\left(\frac{1}{n}-\frac{1}{n+1}\right)} . שינוי סדר הפעולות מראה שהסכום הזה שווה ל- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{1}+\left(-\frac{1}{2}+\frac{1}{2}\right)+\cdots + \left(-\frac{1}{n}+\frac{1}{n}\right)-\frac{1}{n+1} = 1 - \frac{1}{n+1} = \frac{n}{n+1}} .

(ראו גם "חישוב סכום של טור טלסקופי אינסופי")

טור הנדסי

טור הנדסי (או טור אקספוננציאלי או גאומטרי) הוא סכום איבריה של סדרה הנדסית. למשל, הטור הוא טור של איברי סדרה הנדסית המתחילה ב-1, והמנה - 2.

סכום סופי של סדרה הנדסית כלשהי הוא: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_n=a_1 \cdot \frac{q^n-1}{q-1}} ,
כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle q} היא מנת הסדרה, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_1} הוא האיבר הראשון בסדרה ומספר האיברים בה הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} .

הוכחת הנוסחה:

נשים לב כי מתקיים:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (q-1)(q^{n-1}+q^{n-2}+...+q+1)= q^{n}-1}

(זהו טור טלסקופי, כי מפתיחת הסוגריים מקבלים: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^n-q^{n-1}+q^{n-1}-\dots-q+q-1} )

כעת, הסכום של טור בן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} איברים, שאיברו הראשון הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_1} ומנתו הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle q} הוא:

.

לכן, אם נכפול את שני האגפים ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle q-1} (הערה: עבור המקרה הפרטי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle q=1} , בו יתרחש כפל בעייתי באפס, הסדרה ההנדסית תהיה גם סדרה קבועה שכל איבריה זהים (כפל ב-1, איבר היחידה בפעולת הכפל), ועבורה נוסחת הסכום מאוד פשוטה לחישוב: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_n=n \cdot a_1} ), נקבל מהשוויון שהראינו קודם שמתקיים:הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (q-1)S_n=a_1(q^n-1)} , ומכאן: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_n=a_1 \cdot \frac{q^n-1}{q-1}} . כאשר הסכום הוא אינסופי ו־הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\vert q \right\vert<1} הטור מתכנס ומכיוון ש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n \to \infty} q^n = 0} נקבל כי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_\infty=a_1 \lim_{n \to \infty} \frac{q^n-1}{q-1} =\frac{a_1}{1-q}} (אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\vert q \right\vert\geq1} הטור מתבדר).

זהויות אלגבריות של טורים סופיים

ניתן לחלק זהויות של טורים סופיים לכאלה שנובעות ממניפולציות על אינדקסים וכאלה שמבוססות על אקסיומות המבנה האלגברי שאת איבריו סוכם הטור. כך למשל, הזהות של הזזת אינקסים שומרת על סדר הסכימה ולכן לא תלויה באקסיומות של המבנה האלגברי מעליו היא נעשית. לעומת זאת, הזהות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^n C\cdot a_n = C\cdot \sum_{k=1}^n a_n \quad} מבוססת על חוק הפילוג. יותר מכך, הזהות האחרונה היא הכללה של חוק הפילוג, כיוון שזה מתקבל עבור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=2} .

לשם הוכחת הזהויות משתמשים בדרך כלל באינדוקציה מתמטית. כך לדוגמה, הזהות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^n C\cdot a_n = C\cdot \sum_{k=1}^n a_n \quad} מתקיימת בשדה המספרים הממשיים עבור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=2} לפי חוק הפילוג, ואם מניחים שהשוויון מתקיים עבור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} כלשהו אז על ידי שימוש בהנחת האינדוקציה ובחוק הפילוג נקבל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^{n+1} C\cdot a_n =\left( \sum_{k=1}^n C\cdot a_n \right)+ C\cdot a_{n+1} = \left(C\cdot\sum_{k=1}^n a_n\right) + C\cdot a_{n+1}=C\cdot \left(\left(\sum_{k=1}^n a_n\right) + a_{n+1}\right)=C\cdot \sum_{k=1}^{n+1} a_n \quad} . מכאן נסיק שהשוויון נכון עבור כל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} טבעי (עבור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=1} השוויון טריוויאלי). הוכחות זהויות שמשנות את סדר סכימת האיברים הן לרוב יותר מורכבות. לשם ההוכחה של זהויות כאלה ניתן להשתמש בלמה לפיה במבנה אלגברי עם תכונות האסוציאטיביות ו-הקומוטטיבית סכום של קבוצה סופית של איברים לא תלוי בסדר הסכימה.

להלן זהויות נוספות בשדה המספרים הממשיים והאקסיומת מהן הן נובעות:

חוק הפילוג

(הכללה של חוק הפילוג)
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\sum_{i=0}^{n} a_i\right) \left(\sum_{j=0}^{n} b_j\right)=\sum_{i=0}^n \sum_{j=0}^n a_ib_j \quad}

אסוציאטיביות

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=s}^t a_n =\sum_{n=s}^j a_n + \sum_{n=j+1}^t a_n\quad} (פיצול טור)
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=a}^{b}a_n=\sum_{n=0}^{b}a_n-\sum_{n=0}^{a-1}a_n\quad} (וריאציה של הזהות הקודמת)

אסוציאטיביות וקומוטטיביות (שינוי סדר הסכימה)

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=s}^t a_n \pm \sum_{n=s}^{t} b_n = \sum_{n=s}^t \left(a_n \pm b_n\right)\quad}
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i=k_0}^{k_1}\sum_{j=l_0}^{l_1} a_{i,j} = \sum_{j=l_0}^{l_1}\sum_{i=k_0}^{k_1} a_{i,j}\quad}
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k\le j \le i\le n} a_{i,j} = \sum_{i=k}^n\sum_{j=k}^i a_{i,j} = \sum_{j=k}^n\sum_{i=j}^n a_{i,j} = \sum_{j=0}^{n-k}\sum_{i=k}^{n-j} a_{i+j,i}\quad}
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=2s}^{2t+1} a_n = \sum_{n=s}^t a_{2n} + \sum_{n=s}^t a_{2n+1}\quad} (פיצול הטור לטור האיברים הזוגיים וטור האיברים האי זוגיים)
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=2s+1}^{2t} a_n = \sum_{n=s+1}^t a_{2n} + \sum_{n=s+1}^t a_{2n-1}\quad} (גרסה נוספת לפיצול של טור לפי הזוגיות של האיברים)

בנוסף קיימות זהויות שעיקרן מניפולציות על אינדקסים:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^t a_n = \sum_{n=0}^{t} a_{t-n}\quad} (היפוך סדר הסכימה )
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=s}^t a_n = \sum_{n=0}^{t-s} a_{t-n}\quad} (היפוך סדר הסכימה עם הזזת אינדקסים)
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i=s}^m\sum_{j=t}^n {a_i}{c_j} = \left(\sum_{i=s}^m a_i\right) \left( \sum_{j=t}^n c_j \right)\quad} (וריאציה על חוק הפילוג)

טורים אינסופיים

טורים אינסופיים הם הכללה של טורים סופיים, שמאפשרת סכימה של אינסוף איברים. באופן אינטואיטיבי, ניתן לחשוב על סכימה של טור אינסופי כסדרה של צעדים, כשבכל שלב מוספים לסכום מהשלב הקודם איבר נוסף. אם הסכום "הולך ומתקרב" למספר סופי אומרים שהטור מתכנס וסכומו הוא הערך אליו הוא מתקרב. אחרת, הטור מתבדר (לא נהוג לדבר על התכנסות לאינסוף בהקשר של טורים).לדוגמה, הטור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^\infty a_k} סוכם את איברי הסדרה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (a_k)} החל מהאיבר הראשון הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_1} . טור אינסופי מוגדר באמצעות סדרה של סכומים חלקיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (S_n)} , כאשר כל סכום חלקי הוא סכום הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} האיברים הראשונים של הטור, כלומר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_n=\sum_{k=1}^n a_k} . אם סדרת הסכומים החלקיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\{S_n\right\}_{n=1}^\infty} מתכנסת, אומרים שהטור מתכנס וסכומו מוגדר להיות גבול הסדרה. בניסוח אחר, טור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^\infty a_k} מתכנס אםם קיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle L\in\R} כך ש- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n\to\infty}\sum_{k=1}^n a_k=L} , ובמקרה זה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^\infty a_k=L} .

ההגדרה של טור באמצעות סדרת סכומיו החלקיים מאפשרת להשתמש באריתמטיקה של גבולות לחישוב גבולות של טורים מתכנסים. לדוגמה, ניתן לכליל את חוק הפילוג אותו הוכחנו עבור טורים סופיים לטורים אינסופיים: אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^\infty a_k} מתכנס, אז הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^\infty c\cdot a_k=\lim_{n\to\infty}\sum_{k=1}^n c\cdot a_k=\lim_{n\to\infty}c\cdot\sum_{k=1}^n a_k=c\cdot\lim_{n\to\infty}\sum_{k=1}^n a_k=c\cdot\sum_{k=1}^\infty} . לעומת זאת, לפי משפט רימן תכונת הקומוטטיביות לא מתקיימת עבור כל טור מתכנס, וכך גם ותכונת האסוציאטיביות.

בניגוד לטורים הנדסיים, חשבוניים וטלסקופים עבורם קיימת נוסחה מפורשת לסדרת הסכומים החלקיים, עבור רוב הטורים קשה להגיע לנוסחה כזו אם הדבר בכלל אפשרי (לדוגמה, טור שהאיבר הכללי שלו הוא הספרה ה-n-ית אחרי הנקודה של פאי). יחד עם זאת, ישנם מבחני התכנסות שבעזרתם אפשר לבדוק אם טור מסוים מתכנס. בדרך כלל מבחנים אלה לא מספקים מענה לשאלת סכומו של הטור, אבל לאחר שמצאנו שטור מתכנס נוכל לקבל קירוב טוב שלו באמצעות טכניקות של אנליזה נומרית, המסכמות את האיברים הראשונים של הטור, עד שתוספת של איברים נוספים לסכום אינו משנה מהותית את הסכום הכולל. חישוב כזה נעשה בדרך כלל על ידי מחשב, אבל באופן עקרוני ניתן לעשות אותו גם באופן ידני. חישוב נומרי מבוסס על כך שאכן שאר האיברים של הטור אינם משנים את הסכום הכולל, כלומר שהטור מתכנס. אם הנחה זאת אינה נכונה, והטור מתבדר, הסכום שימצא באנליזה נומרית הוא חסר משמעות.

"התנאי ההכרחי" מספק דרך פשוטה יחסית לשלילת התכנסות של טור. לפי תנאי זה טור מתכנס רק אם האיבר הכללי שלו שואף לאפס. כלומר, על מנת להראות שטור מתבדר מספיק להראות שהאיבר הכללי שלו מתכנס למספר שונה מאפס או מתבדר. תנאי זה אינו תנאי מספיק, ויש טורים מתבדרים שהאיבר הכללי שלהם שואף לאפס (לדוגמה, הטור ההרמוני). עבור טורים כאלה יש צורך להשתמש במבחנים מורכבים יותר. הוכחת התנאי ההכרחי מבוססת על אפיון התכנסות לפי קושי לטורים. לפי אפיון זה טור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^\infty a_n } מתכנס אם ורק אם לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varepsilon > 0} קיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} טבעי, כך שלכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n > N} ו-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle l\ge 1} מתקיים: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left|\sum_{k=n+1}^{n+l} a_k\right|<\varepsilon } . נשים לב שעבור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle l=1} מתקיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=n+1}^{n+l}a_k=a_{n+1}} , ולכן אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^\infty a_n } מתכנס אז כמעט לכל n טבעי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left|a_{n+1}\right|<\varepsilon } , ולכן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left|a_{n}\right|} סדרה אפסה.

דוגמאות

  • לפי תנאי הכרחי להתכנסות טורים, טור שהאבר הכללי שלו אינו שואף לאפס, אינו יכול להתכנס.
  • גם הטור ההרמוני, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^\infty \frac {1}{k}} מתבדר (או מתכנס לאינסוף) על אף שהסדרה ההרמונית - הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{n} } שואפת ל-0. דוגמה לכך שהתנאי ההכרחי אינו מספיק להתכנסות הטור.
  • טור הנדסי אינסופי מתכנס כאשר היחס הקבוע בין איבריו הוא בין אחד למינוס אחד: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle |q|<1} . במקרה זה, סכומו הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{a_1}{1-q}} . עבור יחס שגדול או שווה בערכו המוחלט ל-1 הטור מתבדר.
  • כאשר בטור הנדסי היחס הקבוע בין אבריו שווה למינוס אחד, מתקבל טור "מתחלף", לדוגמה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1-1+1-1+1-1+\dots} הוא טור שכזה. בניגוד לדוגמאות שהוצגו לעיל, לא ניתן לומר על טור זה אפילו שהוא מתכנס לאינסוף, כי סכומו אינו מתקרב לאינסוף אלא מתחלף ללא הרף בין 0 ובין 1.

טורים חיוביים

טור חיובי הוא טור שהאיבר הכללי שלו חיובי לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} טבעי. קל להראות שסדרת הסכומים החלקיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (S_n)} של טור חיובי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^\infty a_n} עולה, ולכן היא מתכנסת אם ורק אם יש לה חסם מלעיל. כלומר, טור וחיובי מתכנס אםם קיים חסם מלעיל לסדרת הסכומים החלקיים שלו. הטענה האחרונה היא בסיס למבחני ההשוואה הראשון ולמבחני ההשוואה לטורים חיוביים שבאים בעקבותיו, שכן אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^\infty a_n } ו-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^\infty b_n} טורים חיוביים כך שלכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} טבעי מתקיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\le a_n \le b_n} , אז הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^\infty b_n} מתכנס אםם קיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle M} ממשי כך שלכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} טבעי מתקיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^n b_k\le M} ומכאן לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} מתקיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\le \sum_{k=1}^n a_k \le \sum_{k=1}^n b_k\le M} . כלומר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^\infty a_n } חסום מלעיל ולפי הטענה מתכנס.

התכנסות בהחלט

הטור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum{a_n}} מתכנס בהחלט אם טור הערכים המוחלטים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum{|a_n|}} מתכנס. לפי אפיון קושי לטורים, אם מתכנס בהחלט אז לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varepsilon > 0} קיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} טבעי, כך שלכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n > N} ו-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle l\ge 1} מתקיים: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left|\sum_{k=n+1}^{n+l} \left|a_k\right|\right|<\varepsilon } , ולכן לפי אי שוויון המשולש הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left|\sum_{k=n+1}^{n+l} a_k\right|\le \sum_{k=n+1}^{n+l} \left|a_k\right|=\left|\sum_{k=n+1}^{n+l} \left|a_k\right|\right|<\varepsilon } . מכאן, שוב לפי אפיון קושי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^\infty{a_k}} מתכנס. כלומר, טור מתכנס בהחלט הוא בעצמו טור מתכנס.

טור מתכנס שאינו מתכנס בהחלט, נקרא טור מתכנס בתנאי. לטור המתכנס בתנאי יש תכונה מעניינת: לכל מספר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle L} , אפשר לסדר מחדש את אברי הטור כך שהטור יתכנס וסכומו יהיה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle L} . תוצאה זו נקראת משפט רימן. לעומת זאת, בטור מתכנס בהחלט אפשר לשנות את סדר האיברים, ותמיד יתקבל אותו סכום.

הכנסת סוגריים

הכנסת סוגריים לטור אינסופי היא פעולה שמגדירה טור חדש, שאיברו הכללי הוא סכום של כמה מאיברי הטור המקורי לפי אותו הסדר.

הטור המתקבל מהכנסת סוגריים בטור מתכנס, מתכנס אף הוא. עם זאת, הכנסת סוגריים יכולה להפוך טור מתבדר לטור מתכנס. כך למשל, הכנסת סוגריים על כל זוג איברים בטור המתבדר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^\infty (-1)^{n+1}=1-1+1-1+...} , תיתן את הטור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^\infty (-1)^{2n}+(-1)^{2n+1}=(1-1)+(1-1)+...=0+0+...} המתכנס ל-0.

כאמור, גם אם טור שהתקבל מהכנסת סוגריים מתכנס, אין זה אומר שהטור המקורי מתכנס. עם זאת, אם מתקיים לפחות אחד מהתנאים הבאים, שני הטורים מתכנסים ומתבדרים יחד:

  1. הטור המקורי הוא אי-שלילי.
  2. האיבר הכללי בטור שואף ל-0 ומספר האיברים שבכל זוג סוגריים חסום.
  3. האיברים שבתוך כל סוגריים הם שווי-סימן (גם אם הסימן שונה מסוגריים לסוגריים).

בנוסף, אם טור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^\infty b_n} מתקבל מטור מתכנס הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^\infty a_n} על ידי הכנסת סוגריים, ו-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_n} ו-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_n} הן סדרות הסכומים החלקיים המתאימות לכל אחד מהטורים, אז הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_n} סדרה חלקית של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_n} , ולכן שני הטורים מתכנסים לאותו הגבול, כלומר: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^\infty b_n=\sum_{n=1}^\infty a_n} .

משפט מרטן קובע כי במכפלת קושי של טורים מתקיימת התכנסות של טור המכפלות שמתקבל מהכנסת סוגריים, על-אף שמספר האיברים אינו בהכרח חסום וסימן האיברים שבסוגריים אינו בהכרח קבוע.

טורים בני-סיכום ותורת טאובר

מבחינה תאורטית אפשר לחשוב על המושג 'סכום של טור' שהגדרנו להלן, כעל פונקציונל מתת-המרחב של טורים מתכנסים במרחב הטורים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \mathbb{R}^\mathbb{N}} לשדה המספרים הממשיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \mathbb{R}} . בהינתן טור מתכנס, הפונקציונל הזה מחזיר את סכומו של הטור.

מנקודת מבט זו, אפשר להכליל את מושג הסכום, כך שיכסה כל פונקציונל העונה על הדרישות שציינו. היתרון הוא שכעת נוכל 'להרוויח' טורים חדשים, שאינם מתכנסים במובן הרגיל, אבל פונקציונל הסיכום החדש שלנו יודע לטפל בהם בכל זאת. תחום זה של האנליזה נקרא summability (סכימות).

על ידי ניתוח מדויק של פונקציונל הסכימות, ושיטות מאנליזת פורייה, ניתן להציג אותו בצורה אינטגרלית, ולבנות עבורו פונקציה הנקראת "גרעין", ההבדל בין מושגי ההתכנסות השונים, ניתן על ידי שינוי הגרעין המתאים.

השאלה המעניינת בתחום זה היא בהינתן טור כללי, שידוע כי הוא מתכנס בשיטת סכימות כלשהי, האם הוא מתכנס גם באופן רגיל? מתברר כי ניתן לענות על שאלות אלה בעזרת תורת טאובר. תורת טאובר היא שם כללי למספר משפטי טאובר, שהם משפטים המאפשרים להוכיח התכנסות של טור על סמך התכנסותו בשיטת סכימות ספציפית, יחד עם הנחות נוספות. הטיפול הכללי ביותר בנושא ניתן במסגרת תורת Weiner-Pitt, המאפיינת לגמרי גרעינים.

דוגמאות

אומרים שהטור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n}a_n} מתכנס לערך הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle S} במובן של אבל, אם הגבול של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^{\infty}a_nx^n} כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} שואף ל-1 מלמטה, שווה ל-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle S} . כל טור מתכנס (במובן הרגיל) מתכנס לאותו ערך גם במובן של אבל; לעומת זאת, הטור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum (-1)^{n+1}n} אינו מתכנס במובן הרגיל, וסכומו במובן של אבל הוא רבע.

שיטת סיכום אחרת מיוחסת לצ'זרו (Cesàro). נסמן ב- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_n} את סדרת הסכומים החלקיים של טור נתון. הטור מתכנס במובן הרגיל אם הסדרה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ s_n} מתכנסת. אומרים שהטור "מתכנס במובן של צ'זרו" או שהוא "טור מטיפוס C-1", אם הסדרה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_n^{(1)}=\frac{s_1+\cdots+s_n}{n}} מתכנסת. למשל, הטור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \sum_{n=1}^{\infty}(-1)^{n+1}} אינו מתכנס במובן הרגיל, אבל סכומו במובן צ'זרו הוא חצי. אם טור אינו מתכנס במובן C-1 אבל הממוצעים של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_n^{(1)}} כן מתכנסים, אז הטור הוא מטיפוס C-2, וכן הלאה.

ישנן עוד שיטות סיכום, כגון התכנסות למברט שהיא בעלת שימושים בתורת המספרים להוכחת משפט המספרים הראשוניים. כמו כן ישנה גם שיטת סכימות חשובה שנקראת סכימות בורל.

דוגמאות לתורת טאובר

אם הטור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n}a_n} מתכנס לערך הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle S} במובן של אבל, וכן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle na_n} שואף לאפס, אז הטור מתכנס גם במובן רגיל.

אם הטור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n}a_n} מתכנס לערך הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle S} במובן של צ'זרו, וכן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle na_n\geq -C} אז הטור מתכנס גם במובן רגיל. זהו משפט לנדאו. ישנו משפט של הארדי, החלש יותר ממשפט לנדאו, שקובע כי אם הטור מתכנס צ'זרו, ורק , אז הטור מתכנס.

טורי פונקציות

ערך מורחב – טור פונקציות

כשם שניתן להגדיר סדרה של מספרים, כך גם ניתן להגדיר סדרה של פונקציות, ולכן ניתן להגדיר גם טור של פונקציות. גם סדרות וטורים אלו יכולים להתכנס - במקרה זה לא למספר קבוע, אלא לפונקציה.

חישוב סכום של טורים אינסופיים

ברוב המקרים חישוב סכום של טור אינסופי איננו עניין פשוט. ובכל זאת, קיימות מספר שיטות:

מניפולציות אנליטיות

נראה כאן כיצד ניתן לחשב את סכום הטור ההרמוני המתחלף הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^\infty \left(-1\right)^{k-1}\frac {1}{k}} . זהו טור מתכנס, בניגוד לטור ההרמוני, ונחשב את סכומו באמצעות תכונות של טורי חזקות.

ראשית נביט בטור ההנדסי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=0}^\infty x^k} שמתכנס עבור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\isin(-1,1)} . ידוע כי סכום טור זה הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac {1}{1-x}} . נציב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=-y} ונקבל: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=0}^\infty (-y)^k=\frac{1}{1+y}} . מכיוון שזהו טור חזקות בעל רדיוס התכנסות 1 ניתן לבצע אינטגרציה איבר איבר, ולכן נקבל: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=0}^\infty \int_0^y(-1)^kt^kdt=\int_0^y\frac{1}{1+t}dt} , כלומר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=0}^\infty (-1)^k\frac{y^{k+1}}{k+1}=\ln(1+y)} .

קיבלנו כעת טור חדש בעל רדיוס התכנסות זהה לזה של הטור המקורי - 1. אנו יודעים שטור זה מתכנס בנקודה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=1} (למשל, בעזרת מבחן לייבניץ), ולכן נציב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=1} ונקבל: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=0}^\infty (-1)^k\frac{1}{k+1}=\ln(2)} . והרי , ולכן הגענו לתוצאה המבוקשת: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^\infty \left(-1\right)^{k-1}\frac {1}{k}=\ln(2)} .

חישוב סכום של טור טיילור

לעיתים, טור אינסופי מסוים הוא פשוט טור טיילור של פונקציה מסוימת בנקודה מסוימת. למשל, בדוגמה לעיל השתמשנו בטור טיילור של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ln(1+x)} על מנת לחשב את סכום הטור ההרמוני המתחלף, השווה ל-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ln(2)} .

חישוב סכום של טור פורייה

טור פורייה הוא הצגה של פונקציה כטור אינסופי של סינוסים וקוסינוסים. באמצעות הצבה בתוך הטור או על ידי שימוש בזהות פרסבל אפשר לחשב באמצעותו טורים שונים, למשל ערכים שונים של פונקציית זטא של רימן. לדוגמה:

טור פורייה של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} בקטע הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle [-\pi,\pi]} הוא

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=x=a_0 + \sum_{n=1}^{\infty}(a_n\cos(nx)+b_n\sin(nx)) =}

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\sum_{n=1}^{\infty} (-1)^{n+1}\frac{2}{n} \sin(nx), \quad \forall x\in (-\pi,\pi)}

ומזהות פרסבל

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2} \sum_{n=1}^{\infty}{\left|(-1)^{n+1}\frac{2}{n} \right| ^2} = \frac{1}{2 \pi} \int_{-\pi}^{\pi}{x^2 dx} = 2 \frac{\pi^2}{6} }

ולכן הערך של פונקציית זטא של רימן בנקודה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=2} (הנקרא גם טור אוילר, על שם המתמטיקאי שחישב אותו לראשונה) הוא

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^{\infty}{\frac{1}{n^2}} = \frac{\pi ^2}{6} }

חישוב סכום של טור טלסקופי

טור טלסקופי הוא טור מהצורה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^{\infty}{(a_n - a_{n-1})}} (או הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^{\infty}{(a_n - a_{n+1})}} - הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_1} הראשון ו-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_{n+1}} האחרון).

קל לחשב את סכומו שכן

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^{\infty}{(a_n - a_{n-1})} = \lim_{n \to \infty}{(a_n - a_0)} }

לעיתים, יש טורים שניתן להציגם בצורה זו, (הפעם: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^{\infty}{(a_n - a_{n+1})} = \lim_{n \to \infty}{(a_1 - a_{n+1})} } ). למשל:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^{\infty}{ \frac{1}{ n(n+1) } } = \sum_{n=1}^{\infty} \left( \frac{1}{n} - \frac{1}{n+1} \right) = \lim_{n \to \infty}{ \left( 1 - \frac{1}{n+1} \right) } = 1. }

חישוב בעזרת שאריות

שיטה שימושית לחישוב הסכום של טורים מבוססת על חישוב שאריות בפונקציות מרוכבות. ממשפט השארית נובעת התוצאה הבאה (כאשר f היא פונקציה אנליטית):

  • אם קיימים קבועים C ו- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle p>1} כך ש- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle |f(z)|<\frac{C}{|z|^p}} כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle |z|} גדול מספיק, והטור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=-\infty}^{\infty}f(n)} מתכנס, אז סכומו שווה לסכום השאריות של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\pi f(z)\cot(\pi z)} בכל הקטבים של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} .

ראו גם

קישורים חיצוניים

ויקישיתוף מדיה וקבצים בנושא טור בוויקישיתוף


הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0

34236858טור (מתמטיקה)