נקודת אי רציפות

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

באנליזה מתמטית, נקודת אי רציפות של פונקציה היא נקודה, שבה הפונקציה אינה רציפה. כלומר, הפונקציה אינה מוגדרת בנקודה זו (הנקודה אינה נמצאת בתחום הגדרתה), או שהיא מוגדרת, אך ערכי הפונקציה בסביבתה של הנקודה לא מתקרבים אל ערכה בנקודה עצמה. נהוג לחלק את נקודות אי הרציפות לשלושה סוגים, על פי גבול הפונקציה בנקודת אי הרציפות.

הגדרה פורמלית

תהא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ f} פונקציה ותהא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ a} נקודה. נאמר כי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ a} היא נקודת אי רציפות של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ f} אם (ייתכן כי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ f(a)} כלל לא מוגדר). ניתן לחלק את אי הרציפות לשלושה סוגים:

  1. אי רציפות סליקה: בנקודה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ a} קיימת אי רציפות סליקה, אם הגבול קיים, (ייתכן כי הפונקציה אינה מוגדרת בנקודה שבה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=a} ). אי רציפות כזו נקראת "סליקה", שכן אפשר "לתקן" (או "לסלק") את הפונקציה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ f} על ידי הגדרת הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ f(a)=\lim_{x\to a}f(x)} , וכך תתקבל פונקציה שרציפה בנקודה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ a} .
  2. אי רציפות מהסוג הראשון ("קפיצה"): בנקודה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ a} קיימת אי רציפות מהסוג הראשון, אם הגבול הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \lim_{x\to a}f(x)} אינו קיים, אך קיימים שני הגבולות בסביבות חד-צדדיות שלה. למשל, אם הפונקציה היא פונקציה ממשית במשתנה יחיד וקיימים ושונים זה מזה הגבולות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \lim_{x\to a^+}f(x),\lim_{x\to a^-}f(x)} , אזי יש לפונקציה בנקודה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ a} אי רציפות מסוג ראשון.
  3. אי רציפות מהסוג השני ("עיקרי"): בנקודה קיימת אי רציפות מהסוג השני, אם לפחות אחד משני הגבולות בסביבות חד-צדדיות שלה לא קיים במובן הצר. למשל, אם הפונקציה היא פונקציה ממשית במשתנה יחיד ולפחות אחד מן הגבולות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \lim_{x\to a^+}f(x),\lim_{x\to a^-}f(x)} אינו קיים (אינו ערך ממשי), אזי יש לפונקציה בנקודה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ a} אי רציפות מהסוג השני.

דוגמאות

  1. הפונקציה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ f(x)=\frac {\sin(x)}{x}} אינה מוגדרת כלל בנקודה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x=0} , אך ידוע כי מתקיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \lim_{x\to 0}f(x)=1} . על כן, ניתן להגדיר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ f(0)=1} ותתקבל פונקציה שרציפה גם בנקודה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 0} . עבור כל הגדרה אחרת, תהיה נקודת אי רציפות סליקה של הפונקציה.
  2. פונקציית מדרגה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle H(x)=\left\{\begin{matrix} 0 & & x < 0 \\ 1 & & x \ge 0 \end{matrix}\right. } רציפה בכל הישר פרט לנקודה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x=0} . בנקודה זו יש לה הן גבול מימין והן גבול משמאל, ולכן זוהי נקודת אי רציפות מן הסוג הראשון.
  3. הפונקציה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ f(x)=\sin \left( \frac {1}{x} \right) } היא בעלת אי רציפות מן הסוג השני בנקודה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x=0} (בסביבת נקודה זו, הפונקציה מתנודדת בקצב הולך וגדל, ככל שמתקרבים ל-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 0} , בין הערכים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 1} ו-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ -1} , ולכן לא קיים לה גבול, אפילו חד-צדדי, בנקודה זו).

דוגמאות נוספות עם ייצוג גרפי

שגיאה ביצירת תמונה ממוזערת:
הפונקציה מהדוגמה הראשונה

1. בפונקציה

הנקודה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,x_0=1} היא נקודת אי רציפות סליקה, משום ש- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \lim_{x\to 1}f(x) = 1} , וניתן "להפוך" את הפונקציה לרציפה על ידי הגדרתה מחדש באופן הבא: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=\left\{\begin{matrix}x^2 & \mbox{ for } x< 1 \\ 1& \mbox{ for } x=1 \\ 2-x& \mbox{ for } x>1\end{matrix}\right.}

הפונקציה מהדוגמה השנייה

2. בפונקציה

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=\left\{\begin{matrix}x^2 & \mbox{ for } x< 1 \\ 2-(x-1)^2& \mbox{ for } x>1\end{matrix}\right.}

הנקודה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,x_0=1} היא נקודת אי רציפות מהסוג הראשון, משום ש- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rarr 1^{-}}f(x)=1 \ne 2=\lim_{x\rarr 1^{+}}f(x)} .

הפונקציה מהדוגמה השלישית


3. בפונקציה

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=\left\{\begin{matrix}\sin\frac{5}{x-1} & \mbox{ for } x< 1 \\ & \\ \frac{0.1}{x-1}& \mbox{ for } x>1\end{matrix}\right.}

הנקודה היא נקודת אי רציפות מהסוג השני, משום שהגבול הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rarr 1^{-}}f(x)} לא קיים.

קישורים חיצוניים

הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0

נקודת אי רציפות34176381Q541961