המחשה גאומטרית של משפט הערך הממוצע של קושי: קיים משיק למסילה שמקביל לישר המחבר את עם .
ניסוח פורמלי
תהיינה ו- פונקציות רציפות בקטע וגזירות בקטע . כמו כן, נניח שהנגזרת של אינה מתאפסת בקטע הפתוח (ולכן לפי משפט רול).
אזי קיימת נקודה כך שמתקיים . ראו המחשה למשפט זה באיור משמאל.
משפט הערך הממוצע של לגראנז' הוא המקרה .
הוכחה
ראשית נשים לב כי אם אז על פי משפט רול קיימת נקודה כך ש-, וזאת בסתירה להנחה. לכן בהכרח .
כעת נגדיר פונקציה חדשה:
. פונקציה זו נבנית מהפונקציות באמצעות פעולות אלמנטריות של חיבור, חיסור, וכפל, ולכן, כמו , היא רציפה בקטע וגזירה בקטע .
אם נציב, נקבל את השוויון . לכן F מקיימת את תנאי משפט רול, ומכאן שקיימת נקודה כך ש-.