פונקציה קמורה

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש
דוגמה לפונקציה קמורה

במתמטיקה, פונקציה ממשית היא פונקציה קמורה בקטע מסוים, אם לכל שתי נקודות על גרף הפונקציה (שערך ה-$ \,x $ שלהן נמצא בקטע), הקו המחבר ביניהן נמצא מעל לגרף הפונקציה (או עליו). ההגדרה שכיחה בעיקר עבור פונקציות של משתנה ממשי אחד, והדוגמה הטיפוסית היא הפונקציה $ \ f(x)=x^{2} $, שהיא קמורה בכל הישר הממשי. הפונקציה נקראת קמורה כי היא תוחמת מלמטה קבוצה קמורה.

מושג הקמירות מוגדר גם לפונקציות של כמה משתנים, ובאופן כללי עבור כל פונקציה המוגדרת בתחום קמור של מרחב וקטורי ומקבלת ערכים ממשיים. לפונקציות קמורות יש חשיבות רבה באנליזה פונקציונלית, בעיקר במספר אי-שוויונות יסודיים בתחום זה כמו אי-שוויון ינסן. כאן נעסוק רק בפונקציות של משתנה אחד.

אף על פי שעל פי ההגדרה הלשונית של המילים "קמור" ו"קעור", העקום המתקבל הוא קעור מלמעלה, בהגדרה המתמטית העקום נבחן מלמטה ולכן הוא מכונה פונקציה קמורה. במערכת החינוך התיכוני בישראל נקראת הפונקציה גם "פונקציה קעורה כלפי מעלה".

הגדרה

כאמור לעיל, פונקציה קמורה היא כזו שהקו המחבר שתי נקודות על הגרף שלה נמצא תמיד על או מעל לגרף:

הגדרה: פונקציה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \ f המוגדרת בקטע $ \ I $ נקראת קמורה אם לכל $ \!\,x,y\in I $ ולכל $ \!\,0\leq \lambda \leq 1 $ מתקיים אי השוויון $ \ f(\lambda x+(1-\lambda )y)\leq \lambda f(x)+(1-\lambda )f(y) $.

אפשר לנסח זאת גם כך: לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \ x<u<y בקטע, מתקיים $ \ (y-x)f(u)\leq (y-u)f(x)+(u-x)f(y) $.

מסקנות מן ההגדרה

  • אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \ f פונקציה קמורה המוגדרת בקטע הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \ I אזי לכל $ \,x_{1},x_{2}\ldots ,x_{n} $ בקטע הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \ I ולכל $ \,n $ סקלרים $ \ \lambda _{1},\lambda _{2},\ldots ,\lambda _{n} $ המקיימים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \sum_{k=1}^n\lambda_k=1 מתקיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): f(\sum_{k=1}^n\lambda_k x_k) \le \sum_{k=1}^n\lambda_k f(x_k) . (ניתן להוכיח באינדוקציה).
  • אי-שוויון ינסן מרחיב את המסקנה הקודמת למקרה הרציף: אם $ \ f $ פונקציה קמורה המוגדרת בקטע $ \ I $ ו-

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \ g:[0,1]\to\mathbb{R} פונקציה אינטגרבילית אזי $ f(\int _{0}^{1}g(x)\,dx)\leq \int _{0}^{1}f(g(x))\,dx $.

קמירות במובן החלש ובמובן החזק

פונקציה המקיימת את התנאי $ \lambda f(x)+(1-\lambda )f(y)\geq f(\lambda x+(1-\lambda )y) $ שתואר להלן, לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \ x,y בקטע ולכל $ \ 0\leq \lambda \leq 1 $, היא קמורה במובן החלש. פונקציה קמורה במובן החזק היא כזו שמקיימת את התנאי החזק יותר, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \ \lambda f(x)+(1-\lambda)f(y) > f(\lambda x + (1-\lambda)y) לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \ x\neq y בקטע ולכל $ \ 0<\lambda <1 $. בדרך כלל אין מבחינים בין שתי הגרסאות, וקוראים "קמורה" גם לפונקציה קמורה במובן החלש.

לדוגמה, פונקציה ליניארית היא קמורה במובן החלש, וגם קעורה במובן החלש; רק פונקציה ליניארית יכולה להיות קמורה וקעורה בעת ובעונה אחת (ואף זאת, במובן החלש בלבד). הוספה של פונקציה ליניארית לפונקציה $ \,f $ אינה משנה את הקמירות של $ \,f $.

קמירות בקטע וקמירות מקומית

שלא כמו רציפות או גזירות, לקמירות אין משמעות בנקודה אחת, אלא רק בקטע. אומרים שהפונקציה קמורה מקומית ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \,x (או קמורה בנקודה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \,x ), אם קיימת סביבה של $ \,x $ שבה הפונקציה קמורה.

משפט: אם הפונקציה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \,f קמורה בקטעים פתוחים $ \ I $ ו- $ \ J $ שאינם זרים, אז היא קמורה גם באיחוד שלהם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \ I\cup J .

הוכחה: נתונות הנקודות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \ x<y\in I\cup J . צריך להוכיח שהקו המחבר את $ \ (x,f(x)) $ ל- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \ (y,f(y)) נמצא מעל לגרף הפונקציה. אם שתי הנקודות $ \ x,y $ שייכות לאותו קטע I או J, התוצאה נובעת מן ההנחה על קמירות בכל קטע בנפרד. אחרת, נבחר נקודה כלשהי $ \ z\in I\cap J $. אם הנקודה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \ (z,f(z)) נמצאת מעל לקו, אפשר לבחור נקודות סמוכות מימין ומשמאל ל- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \ z שנמצאות בחיתוך הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \ I\cap J , ולהגיע לסתירה. לכן הנקודה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \ (z,f(z)) מתחת לקו, ובעזרתה אפשר להוכיח שכל נקודות הגרף נמצאות מתחת לקו.

מסקנה: אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \ f קמורה מקומית בכל נקודה בקטע סגור או פתוח הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \,I , אז היא קמורה בכל הקטע.

טענה זו אינה מובנת מאליה, משום שקמירות בקטע אינה מוגדרת כקמירות (מקומית) בכל נקודה שלו. מקמירות מקומית נובע שכל נקודה מוכלת בסביבה שבה הפונקציה קמורה ולכן הגרף שלה נמצא מעל הקווים שמחברים נקודות "קרובות זו לזו" בגרף - אבל לא ברור מדוע תכונה זו מתקיימת לכל שתי נקודות בקטע.

הוכחת המסקנה: ראשית נניח שהקטע סגור. אפשר לכסות אותו בקטעים פתוחים שהפונקציה קמורה בכל אחד מהם, ומכיוון שקטע סגור הוא קומפקטי, לכיסוי זה קיים תת-כיסוי סופי. כעת אפשר לסיים באינדוקציה לפי המשפט הקודם. אם הקטע פתוח, אז לכל שתי נקודות $ \ x,y $ בו קיים קטע סגור המוכל ב- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \,I , ועליו חלה ההוכחה של המקרה הסגור.

הקשר בין קמירות ורציפות

  • פונקציה ממשית הקמורה בקטע הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \,I רציפה בכל נקודה בפנים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \,I .
  • אם סדרת פונקציות ממשיות וקמורות מתכנסת נקודתית לפונקציה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \,f , אזי גם $ \,f $ פונקציה קמורה בקטע (ובפרט רציפה בפנים הקטע).
  • פונקציה ממשית היא קמורה אם ורק אם היא רציפה והאפיגרף שלה היא קבוצה קמורה.

הקשר בין קמירות ונגזרת ראשונה

  • אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \,f קמורה בקטע הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \,I , אזי בכל נקודה בפנים של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \,I יש ל-$ \,f $ נגזרת מימין ונגזרת משמאל.
  • אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \,f גזירה בקטע פתוח, אזי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \,f קמורה בו אם ורק אם הנגזרת הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \,f' היא פונקציה מונוטונית עולה.
  • אם $ \ f $ גזירה בסביבת הנקודה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \ x_0 , אז $ \ f $ קמורה ממש בסביבת הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \ x_0 אם ורק אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \ f(x) > f(x_0) + f'(x_0)(x-x_0) לכל $ \ x $ בסביבה. ובהתאמה אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \ f דיפרנציאבילית בסביבת הנקודה $ \ x_{0} $, אז $ \ f $ קמורה ממש בסביבת הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \ x_0 אם ורק אם $ \ f(x)>f(x_{0})+\langle \nabla f(x_{0}),(x-x_{0})\rangle $ לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \ x בסביבה. זהו פיתוח טיילור מסדר ראשון.

הקשר בין קמירות ונגזרת שנייה

הקשר בין תכונת הקמירות לנגזרת השנייה נובע מן האבחנה הבאה, שאפשר להיווכח בנכונותה על ידי הפעלה של כלל לופיטל פעמיים: אם הפונקציה $ \,f $ גזירה פעמיים בנקודה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \,x , אז

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \ \lim_{h \rightarrow 0}\frac{(\beta-\alpha)f(x+\gamma h)-(\gamma-\alpha)f(x+\beta h)+(\gamma-\beta)f(x+\alpha h)}{h^2}

$ ={\frac {(\beta -\alpha )(\gamma -\beta )(\gamma -\alpha )}{2}}f''(x), $

וזאת לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \ \alpha,\beta,\gamma קבועים. אם $ \ \alpha <\beta <\gamma $, כפי שנניח מעתה, אז המקדם באגף ימין הוא חיובי.

משפט: אם $ \,f $ גזירה פעמיים ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \,x וקמורה (במובן החלש) בסביבה של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \,x , אז $ \ f''(x)\geq 0 $ (מן הקמירות נובע שהמונה באגף שמאל של הזהות הוא חיובי, ולכן הגבול אינו שלילי).

מכאן נובעת מיד

מסקנה: אם $ \,f $ גזירה פעמיים בקטע, וקמורה שם (במובן החלש), אז $ \ f''(x)\geq 0 $ בכל הקטע.

בכיוון ההפוך:

משפט: אם $ \,f $ גזירה פעמיים בקטע והנגזרת השנייה מקיימת הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \ 0 \leq f''(x) בכל הקטע, אז הפונקציה קמורה בקטע (במובן החלש). בנוסף לזה, אם $ \ 0<f''(x) $ בכל הקטע (או אפילו: הנגזרת השנייה אי-שלילית, ומתאפסת במספר סופי של נקודות), אז הפונקציה קמורה בקטע במובן החזק.

הוכחה: נסמן ב- $ \ a<b $ את קצות הקטע. מספיק להראות שהגרף של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \ f נמצא מתחת לקו המחבר את הנקודות המתאימות ל- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \ x=a ו- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \ x=b על הגרף, משום שאז אפשר להפעיל את אותו נימוק על כל זוג נקודות בתוך הקטע. נתבונן בפונקציה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \ g(x)=f(x)-f(a)-\frac{f(b)-f(a)}{b-a}(x-a) , שהיא קמורה באותם מקומות בהם $ \ f $ קמורה (משום שההפרש ביניהן הוא פונקציה ליניארית). קל לבדוק ש- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \ g(a)=g(b)=0 . נניח בשלילה שיש נקודה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \ a<z<b שעבורה $ \ g(z)\geq 0 $; אז לפי משפט הערך הממוצע של לגראנז' קיימת נקודה בקטע הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \ (a,z) שבה הנגזרת הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \ g' אי-שלילית, וקיימת נקודה בקטע הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \ (z,b) שבה הנגזרת אי-חיובית. אבל לפי הנחת המשפט, הנגזרת היא פונקציה עולה (במובן החזק). ההוכחה למקרה של אי-שוויון חלש דומה.

מסקנה: אם $ \ f'' $ רציפה בנקודה וחיובית שם, אז הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \ f קמורה בסביבה של הנקודה (במובן החזק). הוכחה: מן הרציפות נובע שהנגזרת השנייה חיובית בסביבה של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \ x .

לסיכום, בתחום שבו הפונקציה גזירה פעמיים מתקיים:

$ \ 0\leq f'' $ $ \iff $ הפונקציה קמורה במובן החלש $ \implies $ הפונקציה קמורה במובן החזק הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \implies הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \ 0 < f'' .

פונקציה קמורה בחציה

הגדרה: פונקציה $ \ f $ המוגדרת בקטע $ \ I $ נקראת קמורה בחציה (midconvex או Jensen-convex) אם לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \!\, x,y\in I מתקיים אי השוויון הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \ f(\frac{x+y}{2})\le \frac{1}{2} \left(f(x)+f(y)\right) .
  • ברור כי כל פונקציה קמורה היא פונקציה קמורה בחציה.
  • לא כל פונקציה קמורה בחציה היא פונקציה קמורה. ניתן לבנות דוגמה לפונקציה קמורה בחציה שאינה קמורה באופן הבא:
נשלים את הקבוצה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \,\{1\} לבסיס המל $ \,B $ של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \mathbb{R} כמרחב וקטורי מעל $ \mathbb {Q} $. נגדיר פונקציה ממשית הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \,f באופן הבא: $ \,f(x)=1 $ לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \,x\in B ונרחיב באופן ליניארי על כל $ \mathbb {R} $. הפונקציה שהתקבלה היא העתקה ליניארית ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \mathbb{R} כמרחב וקטורי מעל $ \mathbb {Q} $, ולכן מתקיים $ \ f(\lambda x+(1-\lambda )y)=\lambda f(x)+(1-\lambda )f(y) $ לכל $ \lambda \in \mathbb {Q} $, מכאן שהפונקציה קמורה בחציה. בנוסף, כטרנספורמציה ליניארית מתקיים $ \,f(0)=0 $, וכן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \,f(\lambda)=\lambda f(1)=\lambda לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \lambda\in\mathbb{Q} . אולם הפונקציה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \,f אינה רציפה, משום שעל הרציונליים היא ליניארית, אך מקבלת את הערך 1 אינסוף פעמים. מכאן שהפונקציה אינה קמורה כי פונקציה קמורה היא בהכרח רציפה (ראו לעיל).
  • פונקציה קמורה בחציה ורציפה היא פונקציה קמורה. (מכאן שפונקציה המוגדרת בקטע פתוח היא קמורה אם ורק אם היא קמורה בחציה ורציפה).
  • פונקציה קמורה בחציה וחסומה היא פונקציה קמורה.

שתי הטענות לעיל הן מקרים פרטיים של המשפט שהוכח באופן בלתי תלוי על ידי בלומברג וואצלב שרפינסקי:

  • פונקציה קמורה בחציה ומדידה היא פונקציה קמורה.

פונקציה קעורה

ערך מורחב – פונקציה קעורה

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \,f היא פונקציה קעורה אם הקו המחבר כל שתי נקודות על הגרף עובר תמיד מתחת לגרף, כלומר הפונקציה הנגדית הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \ -f קמורה. מכאן שהנגזרת השנייה מאפשרת להכריע בין קמירות לקעירות: בקטעים שבהם הנגזרת השנייה חיובית הפונקציה קמורה (במובן החזק), ובקטעים שבהם היא שלילית הפונקציה קעורה. הנקודות שבהן הפונקציה עוברת מקמירות לקעירות או להפך (ולכן הנגזרת השנייה מתאפסת, אם היא מוגדרת בסביבת הנקודה) נקראות נקודות פיתול.

פונקציה לוג-קמורה

פונקציה חיובית $ \ f $ המוגדרת בקטע הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \ I נקראת פונקציה לוג-קמורה אם $ \ \log f $ היא פונקציה קמורה בקטע $ \ I $ ($ \ I $ הוא קטע כלשהו, סופי או אינסופי). אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \ f גזירה פעמיים, תנאי זה שקול לכך ש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \ f(x)f''(x)\geq f'(x)^2 . לדוגמה, הפונקציות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \ f(x)={\rm e}^{x^2} ופונקציית גמא הן לוג-קמורות.

קל לראות שפונקציה לוג-קמורה היא קמורה, אך ההפך אינו נכון. לדוגמה, הפונקציה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \ f(x)=x^2 קמורה, אבל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): \ \log f(x)=2\log x אינה קמורה.

ראו גם

קישורים חיצוניים


הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0

פונקציה קמורה32652310Q319913