התכנסות בתנאי
במתמטיקה, נאמר כי אינטגרל או טור מתכנס בתנאי, אם הוא מתכנס אבל לא מתכנס בהחלט, או במילים אחרות:
טור מתכנס בתנאי אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^\infty a_n} מתכנס אך הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^\infty |a_n|} מתבדר.
דוגמה ידועה לטור מתכנס בתנאי היא הסדרה ההרמונית המתחלפת (או טור לייבניץ), אשר מוגדרת על ידי:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^\infty \frac{(-1)^{k-1}}{k} = 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\dots}
טור זה מתכנס ל-. טור זה מתכנס בתנאי כי "הערך המוחלט של הטור" - סכום הערכים המוחלטים של כל איבר בטור נותן לנו את הסדרה ההרמונית, שאיננה מתכנסת. משפט רימן קובע כי בטורים מתכנסים בתנאי, חיבור אינה פעולה קומוטטיבית, וכי על ידי החלפת סדר האיברים ניתן להגיע לכל ערך אחר (אפילו לטורים שלא מתכנסים), דבר שאינו אפשרי בטור שמתכנס בהחלט, כי שינוי הסדר אינו משפיע על הסכום. תוצאה ידועה בתורת הטורים היא שטור שמתכנס בהחלט הוא גם מתכנס (במובן הרגיל), אך התוצאה ההפוכה איננה נכונה תמיד, כפי שניתן לראות במקרה של טור לייבניץ שמתכנס, איך איננו "מתכנס בהחלט". תוצאה חשובה נוספת היא משפט לייבניץ, שאומר כי אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \!\, a_n } היא סדרה חיובית היורדת מונוטונית ולכן שואפת לאפס, אזי הטור שנוצר על ידה באופן הבא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^\infty (-1)^n \cdot a_n } הוא טור מתכנס. זנב הטור, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle r_m = \sum_{n=m}^\infty (-1)^n \cdot a_n} , קטן תמיד בערכו המוחלט מגודל האיבר הראשון בו. כלומר: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle | \sum_{n=m}^\infty (-1)^n \cdot a_n | \le a_m} . כמו כן מתקיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-1)^n \cdot r_n \geq 0 } . מבחן זה נותן לנו דרך לדעת אילו טורים מתכנסים בתנאי על בסיס סדרות ידועות. משפט לייבניץ הוא מקרה פרטי של מבחן דיריכלה, שמתחליף את הסדרה של 1 ו 1-, עבור כל סדרה -הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{b_n\}} היא סדרה של מספרים מרוכבים שמקיימת לכל מספר טבעי N, אז הטור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum^{\infty}_{n=1}a_n b_n} מתכנס. שני מבחני ההתכנסות הללו הם מאוד חשובים בתורת הטורים, כי רוב מבחני התכנסות לטורים אינם עובדים על טורים שמתכנסים בתנאי, מכיוון שהם דורשים שהסדרה המדוברת תהיה חיובית, ואם הסדרה החיובית הזו יוצרת טור מתכנס, הרי שזה יהיה גם טור שמתכנס בהחלט, היות שהערך המוחלט לא ישנה דבר. ניתן באותה דרך להגדיר גם אינטגרל שמתכנס בתנאי, ודוגמה לאינטגרל שמתכנס בתנאי הוא האינטגרל של הפונקציה בחלק הלא שלילי של הציר הממשי (ראו אינטגרל פרנל).
התכנסות לא בתנאי
נאמר כי טור מתכנס לא בתנאי אם הוא אינו מתכנס בהחלט אך כל שינוי של סדר האיברים שלו נותן את הסכום המקורי, זאת אומרת שאינו מקיים את משפט רימן. ניתן לראות כי טורים כאלו אינם יכולים להיות ממשים, אך קיימים טורים כאלו במרחבים אחרים, לדוגמה הטור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^\infty \tfrac{1}{n} e_n} כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{e_n\}_{n=1}^{\infty}} הוא בסיס אורתוגונלי של מרחב בנך. בצורה יותר כללית, אריה דבורצקי וקלאוד אמברוס רוג'רס (אנ') הוכיחו את המשפט הבא:
כל מרחב בנך מממד אינסופי מכיל סדרה שמתכנסת לא בתנאי ולא בהחלט.
הוכחה: לכל ε > 0 נבחר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \kappa_\varepsilon,\lambda_\varepsilon \in \mathbf{N}} כל שמתקיים:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \forall N>\kappa_\varepsilon &\quad \sum_{n=N}^\infty \|a_n\| < \tfrac{\varepsilon}{2} \\ \forall N>\lambda_\varepsilon &\quad \left\|\sum_{n=1}^N a_n-A\right\| < \tfrac{\varepsilon}{2} \end{align}}
יהי
לכן לכל מספר שלם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle N > M_{\sigma,\varepsilon}} יהי
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} I_{\sigma,\varepsilon} &= \left\{ 1,\ldots,N \right\}\setminus \sigma^{-1}\left( \left \{ 1,\dots,N_\varepsilon \right \}\right) \\ S_{\sigma,\varepsilon} &= \min \left \{ \sigma(k) \ : \ k \in I_{\sigma,\varepsilon} \right \} \\ L_{\sigma,\varepsilon} &= \max \left \{ \sigma(k) \ : \ k \in I_{\sigma,\varepsilon} \right \} \end{align}}
לכן
ולכן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \forall\varepsilon > 0, \exists M_{\sigma,\varepsilon}, \forall N > M_{\sigma,\varepsilon} \quad \left\|\sum_{i=1}^N a_{\sigma(i)}-A \right\|< \varepsilon, } , וזה מוכיח כי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i=1}^\infty a_{\sigma(i)}=A} ולכן הטור מתכנס לא בתנאי ולא בהחלט. מש"ל.
קישורים חיצוניים
- התכנסות בתנאי, באתר MathWorld (באנגלית) המזהה לא מולא ולא נמצא בוויקינתונים, נא למלא את הפרמטר.
30084578התכנסות בתנאי