אנליזה וקטורית

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש
מערכות צירים וקואורדינטות
מערכות צירים נפוצות
ראו גם
Nuvola apps edu mathematics blue-p.svg

בערך זה
נעשה שימוש
בסימנים מוסכמים
מתחום המתמטיקה.
להבהרת הסימנים
ראו סימון מתמטי.

אָנָלִיזָה וֶקְטוֹרִית היא תחום של המתמטיקה העוסק באנליזה של פונקציות המוגדרות מעל מרחב וקטורי. בדרך כלל, מתמקדת האנליזה הווקטורית ב-, הוא המרחב האוקלידי התלת-ממדי, שמתאים לתיאור המציאות הפיזיקלית שלנו ולכן שימושי ביותר בפיזיקה. האנליזה הווקטורית פותחה על ידי ג'וסיה וילארד גיבס ואוליבר הביסייד בסוף המאה ה-19.

פעולות בין וקטורים

כדי להבין את מושגי היסוד באנליזה וקטורית, יש להכיר את הווקטורים ואת הפעולות האפשריות בין הווקטורים עצמם ובין סקלרים. פעולות אלה הן הרחבה של פעולות החיבור והכפל המוגדרות על איברי שדה.

בפרט, יש לדעת את הנושאים מאלגברה ליניארית של מרחב וקטורי ומרחב מכפלה פנימית. המרחב האוקלידי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}^n} (ובפרט ) הוא מרחב וקטורי עם מכפלה פנימית שמוגדר מעל שדה המספרים הממשיים.

וקטורים

וקטור במרחב וקטורי מממד סופי אפשר לכתוב בצורה , כאשר המספרים הם הרכיבים או הקואורדינטות של .

במרחב התלת-ממדי הווקטורים מייצגים את וקטורי הבסיס הסטנדרטי, המתאימים למערכת הצירים הקרטזית. בכתיבה לפי רכיבים, הם שווים לווקטורים הפענוח נכשל (שגיאת המרה. השרת ("https://wikimedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle \ (1,0,0),(0,1,0),(0,0,1)} בהתאמה.

למבוא יותר אינטואיטיבי על וקטורים במרחב התלת-ממדי, ראו וקטור (פיזיקה).

חיבור

חיבור וקטורים: מחברים וקטורים לפי רכיבים: הפענוח נכשל (שגיאת המרה. השרת ("https://wikimedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle \ (v_{1},\dots ,v_{n})+(w_{1},\dots ,w_{n})=(v_{1}+w_{1},\dots ,v_{n}+w_{n})} .

כפל

בניגוד לחיבור, יש מספר סוגים של פעולות כפל המערבים וקטורים:

  1. כפל בסקלר: אם הפענוח נכשל (שגיאת המרה. השרת ("https://wikimedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle \ c\in \mathbb {R} } הוא מספר ממשי ו- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \vec{v}} וקטור, אז הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ c \vec{v}=(cv_1,\dots,cv_n)} הוא הכפל של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ v} בסקלר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ c} .
  2. מכפלה סקלרית (Dot product): המכפלה הסקלרית של שני וקטורים היא מספר, המוגדר לפי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ (v_1,\dots,v_n)\cdot(w_1,\dots,w_n)=v_1w_1+ \dots + v_nw_n} . מספר זה הוא מכפלת האורך של הווקטור הראשון, האורך של הווקטור השני וקוסינוס הזווית שביניהם. כלומר: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{v} \cdot \vec{w} = |\vec{v}||\vec{w}|\cos\theta} . המכפלה הסקלרית מתאפסת אם ורק אם הווקטורים ניצבים.
  3. מכפלה וקטורית (Cross product): במרחב התלת-ממדי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \mathbb{R}^3} מוגדרת פעולה נוספת, הקרויה מכפלה וקטורית. המכפלה הווקטורית של שני וקטורים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \vec{v}, \vec{w}} היא וקטור המאונך לשניהם, שאורכו הוא כשטח המקבילית הנוצרת ביניהם, כלומר אורך הווקטור הראשון כפול אורך השני כפול סינוס הזווית שביניהם.

את כללי החישוב של המכפלה הווקטורית קל לזכור באמצעות סימון הדטרמיננטה:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (v_1,v_2,v_3)\times(w_1,w_2,w_3)= \begin{vmatrix} \hat x & \hat y & \hat z \\v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \\ \end{vmatrix}} .

כאשר הן וקטורי היחידה של הצירים X ,Y ,Z בהתאמה.

בעוד ששתי הפעולות הראשונות מוגדרות בכל ממד, ובפרט בממד-1 מתכנסות לכפל הרגיל, המכפלה הווקטורית מוגדרת רק במרחב האוקלידי מממד 3.

הטופולוגיה של המרחב האוקלידי

כדי שנוכל לדבר על אנליזה מתמטית במרחב האוקלידי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \mathbb{R}^n} עלינו להיות מצוידים במושגים של "פונקציות רציפות" ו"נקודות קרובות (באותה סביבה)". לשם כך, עלינו להגדיר על המרחב טופולוגיה.

הטופולוגיה שבדרך כלל מוגדרת על הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \mathbb{R}^n} היא הטופולוגיה המטרית המושרית מהמטריקה הבאה שאנו מגדירים על המרחב:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ d(\vec{v}, \vec{w}) = \sqrt{ \sum_{i=1}^{n}{ ( v_i - w_i )^2 } } }

ניתן לראות שמטריקה זו היא בעצם ההכללה של משפט פיתגורס ולכן מהווה הכללה לפונקציית המרחק האוקלידית במישור.

את המטריקה הזאת ניתן להציג באמצעות המכפלה הסקלרית שהגדרנו קודם:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle d( \vec{v}, \vec{w} ) = \sqrt{ (\vec{v} - \vec{w}) \cdot ( \vec{v} - \vec{w}) }}

ובכך המרחב שהגדרנו הוא למעשה מרחב מכפלה פנימית המהווה גם מרחב נורמי. יתרה מכך, המרחב מהווה מרחב הילברט (מממד סופי).

עבור מרחב וקטורי V נהוג בדרך כלל להסתכל על המרחב הדואלי שלו

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ V^* = \{ f \colon V \to \mathbb{R} \ : \ f \mbox{ is linear } \}}

זהו מרחב הפונקציונלים הליניאריים על V. המרחב הדואלי הוא תמיד מרחב וקטורי, ומאותו ממד כמו של V. כאשר עוסקים במרחבים וקטוריים מטריים מצמצמים את המרחב הדואלי לאוסף הפונקציונלים הליניאריים הרציפים בלבד, אם כי עבור ממדים סופיים אין הבדל בין ההגדרות.

מסתבר, שבהרבה יישומים של האנליזה הפונקציונלית *V יותר שימושי מ-V. באמצעותו אפשר להגדיר טופולוגיה חלשה על V (פשוט קובעים שכל הפונקציונלים הליניאריים עליו נחשבים כרציפים) ונוח יותר לבצע אינטגרציה לפונקציונל מ-*V מאשר לווקטור מ-V. כאשר לא עוסקים במרחבים וקטוריים מטריים, יש חשיבות גדולה להבחנות בין *V ל-V ולאינטראקציה בין השניים אך עבור מרחב מטרי שני המרחבים איזומטריים וניתן להתאים לכל וקטור ב-V פונקציונל ב-*V ולהפך (באופן חח"ע ועל) באמצעות המטריקה. במקרה של מרחב הילברט תכונה זו ידועה כמשפט ההצגה של ריס.

פונקציות ואופרטורים

האנליזה הווקטורית עוסקת, כאמור, בווקטורים שהרכיבים שלהם הם מספרים ממשיים או פונקציות. כדי לפשט את הסימונים והחישובים, מוסיפים למערכת את אופרטורי הגזירה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \partial_x, \partial_y, \partial_z} , המסמנים את הנגזרת החלקית לפי המשתנים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x,y,z} , בהתאמה.

כעת אפשר לבנות וקטורים מכמה סוגים: וקטורים קבועים (כמו הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ (2,3,-2)} ), וקטורים של פונקציות (כמו הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ (x,x^2,6)} או ) וגם וקטורים של אופרטורים, כמו הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \nabla=(\partial_x,\partial_y,\partial_z)} . אפשר לבצע פעולות (כמו כפל סקלרי או וקטורי) בין וקטורים מכל הסוגים, כל עוד מפרשים את התוצאות נכון.

באופן כללי יותר, אפשר לחשוב גם על הפונקציות הסקלריות כעל אופרטורים: הפונקציה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ f(x,y,z)=x+y} מתאימה לפעולה של כפל ב- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x+y} . כעת אפשר להתייחס לסקלרים מכל הסוגים (פונקציות ואופרטורים דיפרנציאליים) באותו אופן: לכפל (משמאל) בפונקציה יש הפירוש הרגיל של כפל, וכפל משמאל באופרטור יש לחשב על-פי כללי הגזירה. נעיר שבהכפלת סקלרים הסדר אינו חשוב, אבל כאשר מערבים אופרטורים דיפרנציאליים ופונקציות, הסדר חשוב. לדוגמה, הכפלת הפונקציה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ f} במשתנה ואחר-כך בנגזרת הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \partial_x} מחזירה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ f+x\frac{\mathrm{d}f}{\mathrm{d}x}} , בעוד שהכפלה בסדר הפוך מחזירה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x\frac{\mathrm{d}f}{\mathrm{d}x}} : ההפרש שווה לפונקציה המקורית. אפשר לסכם הבחנה זו בזהות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \partial_x \cdot x - x \cdot \partial_x = 1} .

היתרון בגישה זו הוא שהיא מאפשרת טיפול אחיד בפונקציות ובאופרטורים, כפי שנראה בהמשך.

שדות

שדה סקלרי

פונקציה המתאימה לכל נקודה במרחב ערך סקלרי נקראת שדה סקלרי או בהשאלה מפיזיקה (ובייחוד אלקטרומגנטיות): פוטנציאל.

דוגמאות במרחב תלת ממדי:

  • טמפרטורת המים בנהר - לכל נקודה בנהר (המרחב) מותאמת הטמפרטורה באותה נקודה (סקלר).
  • הפוטנציאל האלקטרוסטטי.
  • הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ f(x,y,z) = x^2 + 3yz^5 - 4ze^{(x-y)} } .

שדה וקטורי

פונקציה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{f} \colon \mathbb{R}^{n} \to \mathbb{R}^{n} } המתאימה לכל נקודה במרחב וקטור (ליתר דיוק, וקטור מהמרחב המשיק באותה נקודה) נקראת שדה וקטורי.

דוגמאות במרחב תלת ממדי:

  • זרימת מים בנהר - לכל נקודה בנהר (המרחב) מותאם וקטור שכיוונו ככיוון זרימת המים באותה נקודה וגודלו כמהירות הזרימה.
  • השדה החשמלי.
  • הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \vec{f}(x,y,z) = \left( xy + 42, \ 56 \sin(z), \ e^{(y^2 - xz)} \right) = (xy + 42) \hat{x} \ + \ 56 \sin(z) \hat{y} \ + \ e^{(y^2 - xz)} \hat{z} }

השדות בדרך כלל אינם ליניאריים, ואפילו לא בהכרח רציפים. למרות זאת, באנליזה וקטורית מתעניינים בעיקר בפונקציות חלקות (שיש להן נגזרות מכל סדר), או בעלות מספר סופי בלבד של נקודות סינגולריות.

נגזרות וקטוריות

פרק זה דן במרחב הווקטורי (הפיזיקלי) הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \mathbb{R}^3} , שיתואר בקואורדינטות קרטזיות, אלא אם כן מצוין במפורש אחרת.

מבוא

האופרטור הבסיסי במרחב זה הוא אופרטור הגזירה (נקרא גם דֶל), המוגדר:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{\nabla} \equiv \hat{x}\frac{\partial}{\partial x} +\hat{y} \frac{\partial}{\partial y } + \hat{z}\frac{\partial}{\partial z} \equiv \left( \ \partial_x \, \ \partial_y \, \ \partial_z \right).}

אפשר לקבל את האופרטורים הדיפרנציאליים היסודיים על ידי פעולות הכפל השונות בהן משתתף אופרטור הגזירה:

  1. הגרדיאנט של שדה סקלרי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ f} הוא שדה וקטורי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \vec{\nabla} f } שרכיביו הם הנגזרות החלקיות של השדה המקורי.
  2. הדיברגנץ של שדה וקטורי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \vec{f}} הוא שדה סקלרי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \vec{\nabla} \cdot \vec {f} } המודד את קצב השינוי במאונך לצירים.
  3. הרוטור (או curl) של שדה וקטורי תלת-ממדי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \vec{f}} הוא שדה וקטורי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \vec{\nabla} \times \vec{f} } המודד את כיוון השינוי של השדה המקורי.

המכפלה הסקלרית של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \nabla} עם עצמו היא אופרטור חשוב אחר, הנקרא לפלסיאן.

לעיתים נקרא הסימון המשולש של האופרטור בשם "נבלא" או "נבלה", על שום דמיונו לנבל (בתחביר LaTex הוא מוצג על ידי הפקודה \nabla). בספרים רבים נהוג לכתוב את המשולש ההפוך של הדל בגופן (פונט) מודגש, במקום לרשום חץ קטן למעלה. מטרת שני הסימונים היא להדגיש שמדובר בווקטור.

גרדיאנט

המחשה של גרדיאנט. באיורים שלפנינו, השדה הסקלרי מתואר באמצעות שינוי הצבע, כאשר אזורים כהים יותר הם ערכים גדולים יותר של הפונקציה. החצים הכחולים מתארים את הגרדיאנט הנגזר מהשדה הסקלרי. שימו לב שהחצים פונים אל עבר האזורים הגבוהים יותר.

גרדיאנט הוא אופרטור המקבל פונקציה סקלרית (פונקציית פוטנציאל) ומחזיר פונקציה וקטורית שרכיביה הם הנגזרות החלקיות של הפונקציה המקורית.

המשמעות הגאומטרית של הגרדיאנט היא שהוא מחזיר את השינוי בפוטנציאל (השדה הסקלרי) כתוצאה מ"תזוזה" במרחב. מאחר שמדובר במרחב תלת-ממדי, הכיוון משפיע על השינוי של הפונקציה בנוסף לגודל התזוזה. הכיוון של הווקטור שמחזיר הגרדיאנט הוא הכיוון בו השינוי בפונקציה מקסימלי.

הגרדיאנט מוגדר באופן הבא:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \!\, \mbox{grad} \ f(x,y,z) = \frac{\partial f}{\partial x} \hat{x} + \frac{\partial f}{\partial y} \hat{y} + \frac{\partial f}{\partial z} \hat{z}}

באמצעות אופרטור הדל, אפשר פשוט לרשום ש

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox{grad} \ f = \vec{\nabla} f}

כלומר הפעלה של האופרטור הווקטורי דל על הפונקציה הסקלרית בצורה של כפל בסקלר, וקבלה של פונקציה וקטורית.

עבור כל שדה סקלרי, אופרטור הגרדיאנט מחזיר שדה וקטורי שנקרא "Gradient Field" ובו החצים מכוונים לכיוון בו הפונקציה עולה וגודלם של החצים מייצג את השיפוע של השדה הסקלרי. הכיוון של הגרדיאנט הוא הכיוון שבו יש שינוי מקסימלי בערך של הפונקציה.

דוגמה פיזיקלית: הפוטנציאל האלקטרוסטטי מסומן ב , מחוקי האלקטרוסטטיקה ידוע לנו ש הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \!\, \vec{E} = - \vec{\nabla} \phi} כאשר E הוא השדה החשמלי.

נגזרת כיוונית

נגזרת כיוונית או נגזרת מכוונת של שדה סקלרי היא מספר המתאר כמה השתנתה הפונקציה כאשר הערך שהיא מקבלת השתנה בגודל אינפיניטסימלי בכיוון מסוים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{n}} .

כמו כל נגזרת, ההגדרה הפורמלית נעשית באמצעות גבול:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle D_{\hat{n}}{f(\vec{r})} = \lim_{h \rightarrow 0}{\frac{f(\vec{r} + h\vec{n}) - f(\vec{r})}{h}}}

אם השדה או הפונקציה דיפרנציאביליים בתחום, אפשר לחשב את הנגזרת הכיוונית בקלות באמצעות הגרדיאנט, על ידי הנוסחה

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle D_{\hat{n}}{f(\vec{r})} = \hat{n} \cdot \left( \vec{\nabla} f(\vec{r}) \right)}

כאשר ה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cdot} הוא סימון למכפלה סקלרית.

דוגמה: נניח הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \!\, f(x,y,z) = x + y^2 + z^3} .
אזי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox {grad} \ f = \nabla f = \left( \ 1 \, \ 2y \, \ 3z^2 \ \right)}

ואילו הנגזרת הכיוונית שלה כאשר נעים לאורך האלכסון הראשי של קובייה, כלומר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{n} = \frac{1}{\sqrt{3}} \left( 1, 1, 1 \right)} , היא

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{n} \cdot \nabla f = \frac{1}{\sqrt{3}} \left( 1, 1, 1 \right) \cdot \left( 1, 2y, 3z^2 \right) = \frac{1}{\sqrt{3}} \left( 1 + 2y + 3z^2 \right)}

דיברגנץ

הדיברגנץ הוא מעין מדד לכמות השטף של שדה וקטורי שיוצא מנקודה כלשהי במרחב.

שטף

יהי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \vec{F} = F_x \hat{x} + F_y \hat{y} + F_z \hat{z} } שדה וקטורי. אזי השטף של השדה F דרך שטח A מוגדר על ידי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \mbox{flux} = \iint_A{\vec{F}} \cdot \mathrm{d}\vec{A}} . אם השדה F קבוע אזי השטף שווה פשוט ל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{F} \cdot \vec{A}} כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{A}} הוא וקטור שגודלו הוא גודל השטח A ובכיוונו הוא ניצב לשטח A (נורמל).

כדי להבין אינטואיטיבית את מושג השטף כדאי להשתמש באנלוגיה מתחום הנוזלים והזרימה ולהסתכל על מרחב בו זורמים מים, ובו יש "ברזים" ו"חורי ניקוז" שיכולים להוסיף או לגרוע מים מהמרחב.

אם מסתכלים על קובייה דמיונית, ומודדים כמה מים זורמים דרך כל פאה ובאיזה כיוון (מים שיוצאים החוצה נספרים באופן חיובי ואילו מים שנכנסים פנימה באופן שלילי), ומחשבים את מאזן המים הכולל דרך הקוביה, אפשר לדעת מה סה"כ הספיקה של הברזים או חורי הניקוז. אם למשל יש רק ברזים שווים שמפוזרים, הרי מכל קובייה כזו יהיה שטף חיובי, ויהיה אפשר לדעת בעזרת מדידת השטף דרך דפנות הקובייה מה כמות הברזים הכלואה בה. אפשר לחשב גם את צפיפות ה"ברזים" (או "חורי ניקוז", אם השטף שלילי), על ידי חלוקה בנפח הקובייה.

הגדרת הדיברגנץ

הדיברגנץ מודד בדיוק את אותו דבר - את צפיפות ה"ברזים"/"חורי ניקוז" - בנקודה במרחב. כדי לחשב את הגודל הזה, "בונים" סביב הנקודה קובייה אינפינטסימלית בעלת נפח V, ואז לוקחים את הגבול כאשר הנפח שלה שואף ל 0, כלומר:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox{div} F = \lim_{V \to 0}{\frac{1}{V} \iint{ \vec{F} \cdot \mathrm{d}\vec{A}}}}

כאשר האינטגרל הוא על המשטח (הסגור) העוטף את הנפח V.

בקואורדינטות קרטזיות, אפשר להראות שאת הדיברגנץ אפשר לחשב על ידי מכפלה סקלרית של אופרטור הדל בשדה:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox{div} \vec{F} = \vec{\nabla} \cdot \vec{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z} }

כלומר על ידי מכפלה סקלרית סימבולית של האופרטור הווקטורי דל (משמאל) בפונקציה וקטורית (מימין) שנותן פונקציה סקלרית.

רוטור (Curl)

הרוטור (או Curl), הוא גודל דיפרנציאלי המודד את נטייתו של שדה וקטורי להסתובב סביב נקודה מסוימת.

הרוטור מוגדר כך:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{curl} \ \vec{F} = \lim_{a_i \to 0}{\frac{1}{a_i} \oint_{c_i}{ (\vec{F} \cdot d \vec{r}) \cdot \hat{n}_i}} }

כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_i } מסמל גודל של משטחונים המחלקים שטח פנים של נפח מסוים, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_i } מסמל את העקומים התוחמים כל אחד ממשטחונים אלו ו הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{n}_i } מסמל את וקטורי היחידה המאונכים למשטחונים אלו.

ניתן להראות שבקאורדינטות קרטזיות הרוטור ניתן לחישוב על ידי מכפלה וקטורית של האופרטור דל בשדה:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \operatorname{curl} \ \vec{F} = \vec{\nabla}\times\vec{F} = \left( \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}\right)\hat{x} + \left( \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}\right)\hat{y} + \left( \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y}\right)\hat{z} }

צורת רישום קלה יותר לזכירה של הנוסחה לעיל היא באמצעות הדטרמיננטה של המטריצה הבאה:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left[ \begin{matrix} \hat{x} & \hat{y} & \hat{z} \\ {\partial \over \partial x} & {\partial \over \partial y} & {\partial \over \partial z} \\ F_x & F_y & F_z \end{matrix} \right]}

כלומר,

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{\nabla}\times\vec{F} = \det \left[ \begin{matrix} \hat{x} & \hat{y} & \hat{z} \\ {\partial \over \partial x} & {\partial \over \partial y} & {\partial \over \partial z} \\ F_x & F_y & F_z \end{matrix} \right]}

בתנאי שמפתחים לפי השורה הראשונה. יש להדגיש כי זהו סימון שגוי מבחינה מתמטית (שהרי אופרטור גזירה אינו יכול להיות איבר במטריצה).

צורה אחרת היא באמצעות טנזור לוי-צ'יויטה:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{\nabla} \times \vec{F} = \epsilon_{ijk} \hat{e}_i ( \partial_j F_k )}

כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_{xyz}=1} ושומר סימן לכל תמורה ציקלית של האינדקסים, הופך סימן עבור תמורה אי-זוגית של האינדקסים ומקבל את הערך אפס אם יש שני אינדקסים זהים. כמו כן,

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \partial_{j} := \frac{\partial}{\partial r_j}}

הוא סימון מקוצר לנגזרת החלקית (למשל: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \partial_{r_1} = \partial_{r_x} = \partial_x} היא גזירה לפי x כאשר y ו-z מוחזקים כקבועים).

לפלסיאן

הלפלסיאן הכללי מוגדר בקואורדינטות קרטזיות:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} }

כיוון שזהו אופרטור סקלרי הוא יכול לפעול הן על פונקציה סקלרית (על ידי כפל סימבולי רגיל משמאל), והן על פונקציה וקטורית (על ידי כפל בסקלר סימבולי משמאל).

לפלסיאן על פונקציה סקלרית

כאשר הלפלסיאן מופעל על פונקציה סקלרית ניתן להביע אותו גם כ

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \nabla^2 f= \vec{\nabla} \cdot \vec{\nabla}f = \operatorname{div} \cdot \operatorname{grad} \ f}

כלומר הדיברגנץ של הגרדיאנט של הפונקציה.

בקואורדינטות פולריות (קוטביות),

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \nabla^2 f = \frac{\partial^2 f}{\partial r^2} + \frac{1}{r} \frac{\partial f}{\partial r} + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2}}

בקואורדינטות כדוריות (ספריות),

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \nabla^2 f = \frac{1}{r^2} \frac{\partial}{\partial r}\left( r^2 \frac{\partial f}{\partial r}\right) + \frac{1}{r^2 \sin\theta}\frac{\partial}{\partial \theta}\left( \sin\theta \frac{\partial f}{\partial \theta}\right) + \frac{1}{r^2 \sin^2 \theta}\frac{\partial^2 f}{\partial \phi^2}}

ביטוי זה נכון רק כשהוא פועל על פונקציה סקלרית.

פונקציה שהלפלסיאן שלה שווה לאפס בקבוצה פתוחה כלשהי נקראת פונקציה הרמונית על קבוצה זו.

אינטגרלים

האינטגרל של שדה סקלרי או שדה וקטורי.

אינטגרל מסלולי

Postscript-viewer-blue.svg ערך מורחב – אינטגרל קווי

אינטגרל משטחי

Postscript-viewer-blue.svg ערך מורחב – אינטגרל משטחי

באנליזה וקטורית ישנם שני סוגי אינטגרל משטחי:

  1. אינטגרל משטחי מסוג ראשון:
    אינטגרל של שדה סקלרי: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{S} f(\vec{r}) \,\mathrm{d}S}
  2. אינטגרל משטחי מסוג שני:
    אינטגרל של שדה וקטורי: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{S} \vec{F}(\vec{r}) \cdot \mathrm{d}\vec{S} = \int_{S} \vec{F}(\vec{r}) \cdot \hat{n} \mathrm{d}S}

כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{d}\vec{S} = \hat{n} \, \mathrm{d}S } הוא וקטור משטח אינפיניטסימלי שגודלו כגודל השטח האיפיניטסימלי וכיווני ניצב למשטח (הווקטור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{n}} הוא וקטור יחידה נורמל הניצב למשטח).

אינטגרל מרובה

Postscript-viewer-blue.svg ערכים מורחבים – אינטגרל כפול, אינטגרל משולש

משפטי יסוד באנליזה וקטורית

  • זהויות של נגזרות וקטוריות
    1. הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \vec{\nabla} \times (\vec{\nabla}f) = 0}
    2. הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \vec{\nabla} \cdot ( \vec{\nabla} \times \vec{F} ) = 0}
    3. הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \vec{\nabla} \cdot ( \vec{\nabla}f ) = (\vec{\nabla} \cdot \vec{\nabla} )f = \nabla^2 f}
  • משפט הגרדיאנט
    אינטגרל מסלולי מנקודה a לנקודה b של גרדיאנט של פונקציה סקלרית מקיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{C}{\vec{\nabla}f(\vec{r}) \cdot d\vec{l}} = f(\vec{b}) - f(\vec{a})}
  • משפט גאוס (משפט הדיברגנץ):
    האינטגרל של השטף על משטח סגור שווה לאינטגרל הנפחי של דיברגנץ השדה בתוך הנפח הכלוא על ידי המשטח. כלומר:
    הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \oint_{\partial V}{\vec{F}\cdot \mathrm{d}\vec{A}} = \int_{V}{\vec{\nabla} \cdot \vec{F} \ \mathrm{d}V}}
  • משפט סטוקס
    האינטגרל המסלולי של פונקציה וקטורית על מסלול סגור שמהווה שפת משטח שווה לאינטגרל המשטחי של רוטור אותה פונקציה על המשטח.
    הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \oint_{\partial A}{\vec{F} \cdot \mathrm{d}\vec{r}} = \int_{A}{( \vec{\nabla} \times \vec{F} ) \cdot \mathrm{d}\vec{A}}}

יישומים

ראו גם

לקריאה נוספת

קישורים חיצוניים


Logo hamichlol 3.png
הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0