פונקציית זטא של רימן
בערך זה |
פונקציית זטא של רימן היא פונקציה מרוכבת הקרויה על שמו של המתמטיקאי ברנהרד רימן, ונודעת לה חשיבות רבה בתורת המספרים, בשל הקשר שלה להתפלגותם של המספרים הראשוניים. לפונקציה שימושים גם בפיזיקה, בתורת ההסתברות ובסטטיסטיקה. באפסים של פונקציה זו, שהם הערכים שהצבתם בפונקציה תיתן אפס, עוסקת השערת רימן, שהיא אחת הבעיות הפתוחות המרכזיות במתמטיקה. הראשון לחקור את הפונקציה היה לאונרד אוילר במאה ה-18.
פונקציית זטא של רימן היא פונקציה מרוכבת המוגדרת עבור מספרים מרוכבים בעלי חלק ממשי גדול מ-1 על ידי . לטור דיריכלה זה קיימת המשכה אנליטית יחידה לכל המישור המרוכב, עם קוטב פשוט בנקודה . פונקציה זו היא הדוגמה המוכרת ביותר למשפחה של פונקציות הקרויות כולן פונקציות זטא.
ניתן לחשב באופן אנליטי את הערכים של פונקציית זטא בנקודות ממשיות שלמות זוגיות, באמצעות שוויון פרסבל. כך למשל ו-.
באפסים של פונקציה זו, שהם הערכים שהצבתם בפונקציה תיתן אפס, עוסקת השערת רימן: ההשערה קובעת שכל האפסים ה"לא טריויאליים", כלומר האפסים שאינם מהצורה כאשר טבעי, נמצאים על הישר . השערה זו היא אחת הבעיות הפתוחות המרכזיות במתמטיקה.
הקשר בין פונקציית זטא למספרים הראשוניים נובע מנוסחת המכפלה של אוילר: , כאשר המכפלה עוברת על כל המספרים הראשוניים.
המשכה אנליטית והמשוואה הפונקציונלית
כפי שהיא מוגדרת בדרך כלל, על ידי הסכום , הפונקציה מתכנסת רק לערכים מימין לישר . כדי להגדיר את הפונקציה על כל המישור, יש לבצע המשכה אנליטית: . האינטגרל בביטוי האחרון מתכנס מימין לישר , ואפשר להשתמש בשוויון הזה כדי להגדיר את הפונקציה בתחום הרחב יותר.
אם מגדירים , כאשר היא פונקציית גמא, אז מתקיים השוויון לכל מרוכב שאינו שלם. משוואה זו, המדגימה את הסימטריה של פונקציית זטא ביחס לציר , היא הבסיס לתאוריה הענפה של פונקציה זו, ושל פונקציות זטא בכלל. אפשר להוכיח אותה מן הזהות שמקיימת פונקציית תטא . לפונקציית זטא של רימן יש גם גרסה סימטרית, שהיא פונקציית קסי של רימן, המוגדרת .
מקורות
- Riemann's zeta function, H.M. Edwards, 1974.
קישורים חיצוניים
- פונקציית זטא של רימן, באתר MathWorld (באנגלית) המזהה לא מולא ולא נמצא בוויקינתונים, נא למלא את הפרמטר.
שגיאות פרמטריות בתבנית:בריטניקה
פרמטרי חובה [ 1 ] חסרים- מאמר של אודרי טרס בנושא פונקציית זטא
32883500פונקציית זטא של רימן