שדה המספרים ה-p-אדיים
במתמטיקה, שדה המספרים ה-p-אדיים הוא שדה, שאבריו הם המספרים ה-p-אדיים. יש שדה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} -אדי אחד לכל מספר ראשוני הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} , ומקובל לסמן אותו באות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{Q}_p} . כל הרחבה סופית של שדה המספרים ה-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} -אדיים נקראת "שדה -אדי".
על שדה המספרים ה--אדיים מוגדרת הערכה בדידה, ההופכת אותו לשדה מקומי, שהוא בעל עוצמת הרצף, ואינו ניתן לסידור. לפי משפט אוסטרובסקי, כל שדה מקומי ממאפיין אפס (עם ערך מוחלט לא ארכימדי) הוא -אדי לאיזשהו .
את המספרים ה--אדיים פיתח קורט הנזל בתחילת המאה העשרים, והם הפכו במהירות לאחד הכלים ומושאי המחקר הבסיסיים באריתמטיקה המודרנית ובתורת השדות.
תכונות
כל מספר -אדי אפשר לכתוב באופן יחיד בצורה כאשר שלם, ו-. החיבור והכפל מוגדרים כאילו היה מדובר בטורי חזקות במשתנה אחד.
אלגברה
המספרים מהצורה נקראים "שלמים -אדיים"; כקבוצה, הם מרכיבים את חוג השלמים ה-p-אדיים , שהוא תת-חוג מקומי וראשי (חוג ההערכה הדיסקרטית המתקבל מההערכה הדיסקרטית שתוצג בתת-הפסקה הבאה) של ; כדי לקבל את השדה די להפוך את האיבר : . חוג השלמים ה--אדיים הוא גבול הפוך של חוגי המנה .
טופולוגיה
על שדה המספרים ה--אדיים מוגדרת הערכה דיסקרטית (בהנחה ש-), וזו מגדירה ערך מוחלט לפי הפענוח נכשל (שגיאת המרה. השרת ("https://wikimedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle |f|=p^{-\nu (f)}} ומטריקה (), המגדירה טופולוגיה. תחת הטופולוגיה הזו, חוג השלמים ה--אדיים, שהוא כדור היחידה הסגור בשדה, הוא קבוצה קומפקטית, הומיאומורפית לקבוצת קנטור. השדה אינו קומפקטי, אבל הוא קומפקטי מקומית.
אריתמטיקה
שורשי היחידה ב- הם אלו שסדרם מחלק את . כאשר אי-זוגי, לשלם רציונלי שאינו מתחלק ב- יש שורש -אדי אם ורק אם יש לו שורש מודולו (כך למשל ); עבור התנאי הוא שיהיה ל- שורש מודולו 8, ולדוגמה . הלמה של הנזל מאפשרת לפתור משוואות פולינומיות בשדה המספרים ה--אדיים, ובאופן כללי יותר, לפרק פולינומים לגורמים, על ידי הרמה, כביכול, של הבעיה מן המנות הסופיות .
בניגוד לשדה המספרים הממשיים, שיש לו הרחבה אלגברית אחת ויחידה - המרוכבים - לשדה המספרים ה--אדיים יש הרחבות אלגבריות מכל מימד, ומספרן (בכל מימד) סופי. אם אי זוגי יש בדיוק שלוש הרחבות ריבועיות, ולשדה המספרים ה-2-אדיים יש שבע הרחבות ריבועיות. מבין ההרחבות האלה, יש הרחבה לא מסועפת יחידה מכל מימד.
הסגור האלגברי אינו שלם ביחס לטופולוגיה המושרה; את הסגור השלם מסמנים ב- , ושדה זה הוא סגור גם אלגברית וגם מטרית. מבחינה אלגברית (וללא המבנה המטרי), איזומורפי לשדה המספרים המרוכבים, .
חבורת גלואה של כל הרחבה סופית של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{Q}_p} היא פתירה, ולכן חבורת גלואה האבסולוטית הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{Gal}(\overline{\mathbb{Q}}_{p}/\mathbb{Q}_{p})} היא פרו-פתירה.
ראו גם
מערכות מספרים | ||
---|---|---|
מספרים | המספרים הטבעיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{N}} (מערכת פאנו) • חוג המספרים השלמים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{Z}} (מספרים חיוביים ושליליים, מספר שלם) • שדה המספרים הרציונליים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{Q}} (מספר רציונלי, מספר אי-רציונלי) • שדה המספרים הממשיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}} (הישר הממשי, מספר ממשי) • שדה המספרים המרוכבים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{C}} (המישור המרוכב, מספר מרוכב, מספר מדומה) | |
הרחבות של חוג המספרים השלמים | חוג השלמים של גאוס הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \mathbb{Z}[i]} • חוג השלמים האלגבריים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \overline{\mathbb{Z}}} • חוג השלמים של אייזנשטיין הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \mathbb{Z}[\omega]} | |
הרחבות של שדה המספרים הרציונליים | שדה מספרים • שדה המספרים הניתנים לבנייה • שדה המספרים האלגבריים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \overline{\mathbb{Q}}} (מספר אלגברי, מספר טרנסצנדנטי) • שדה המספרים ה-p-אדיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{Q}_p} (מספר p-אדי) • שדה ציקלוטומי | |
מעבר למרוכבים | אלגברת קווטרניונים (אלגברת הקווטרניונים של המילטון הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ {\mathbb{H}}} ) • אלגברת אוקטוניונים (אלגברת האוקטוניונים של קיילי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ {\mathbb{O}}} ) • אלגברות קיילי-דיקסון |
שדה המספרים ה-p-אדיים32081219Q18192648