חוג המספרים השלמים
חוג המספרים השלמים הוא מערכת מספרים הכוללת את המספרים השלמים, חיוביים ושליליים, לרבות אפס (ואותם בלבד), יחד עם פעולות החיבור והכפל. את חוג המספרים השלמים מקובל היום לסמן באות , שהיא האות הראשונה במילה הגרמנית "Zahlen" (מספרים).
אוסף זה של מספרים הוא הדוגמה הבסיסית לחוג קומוטטיבי. בפיתוח האקסיומטי של מערכות מספרים, חוג המספרים השלמים מוגדר מתוך מערכת פאנו של המספרים הטבעיים. זהו אחד המבנים הבסיסיים ביותר בתורת החוגים ובמתמטיקה בכלל. יחד עם תכונותיו והפעולות המוגדרות עליו, מהווה החוג אבן יסוד בתחומים רבים, כמו אלגברה, תורת המספרים ועוד. תכונות החוג מהוות בסיס להגדרות כלליות יותר בתורת החבורות והחוגים.
הגדרה פורמלית
ישנן מספר דרכים להגדיר את חוג השלמים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \mathbb{Z}} . אחת מהן היא בעזרת המספרים הטבעיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{N}=\left\{1,2,3,... \right\} } (שמוגדרים בעזרת אקסיומות פיאנו) :
- נוסיף איבר נייטרלי לחיבור שנסמנו הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0} , שיקיים לכל איבר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} במערכת החדשה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a+0=0+a=a}
- לכל מספר טבעי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} נגדיר את המספר הנגדי לו, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a} כך ש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a+(-a)=(-a)+a=0} .
בהינתן הגדרות אלו, ניתן להוכיח כי הוא חוג. היות שכפל המספרים הטבעיים חילופי, הרי שגם הכפל הנגזר חילופי, והחוג הוא חוג קומוטטיבי.
החבורה הציקלית האינסופית
החבורה החיבורית של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \mathbb{Z}} היא החבורה הציקלית האינסופית, כלומר החבורה הציקלית האינסופית היחידה עד כדי איזומורפיזם. זוהי גם החבורה החופשית עם יוצר אחד.
החבורה נוצרת על ידי 1 ו--1. כל האיברים בה מלבד 0 (איבר היחידה) הם מסדר אינסופי, וכל תת-החבורות שלה הן החבורות הציקליות האינסופיות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n\mathbb{Z}=\{nk \mid k\in\mathbb{Z}\}} .
תכונות כחוג
המספרים השלמים הם אחד החוגים הבסיסיים ביותר. מעבר לכך, במקרים רבים הם מהווים מוטיבציה להגדרות כלליות יותר, שמטרתן היא להכליל את התכונות של המספרים השלמים בתורת החוגים הכללית. להלן מספר תכונות מרכזיות של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \mathbb{Z}} כחוג:
- כאמור לעיל, פעולת הכפל שומרת על קומוטטיביות ממערכת המספרים הטבעיים, ועל כן החוג הוא קומוטטיבי.
- בחוג קומוטטיבי זה אין מחלקי אפס, כלומר הוא תחום שלמות.
- האיברים ההפיכים היחידים לפעולת הכפל בחוג הם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle -1,1} .
- חוג זה הוא תחום ראשי, כלומר כל האידיאלים בו הם ראשיים. אכן קל לוודא שכל קבוצה מהצורה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (a)=\left\{ ab|b\in \mathbb { Z } \right\} } היא אידיאל, וגם ההפך נכון - אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle I} אידיאל שונה מהאידיאל האפס, אפשר לבחור את המחלק המשותף המקסימלי של איברי האידיאל, ולהראות כי הוא יוצר את האידיאל.
- על חוג זה ניתן להגדיר נורמה בעזרת פונקציית הערך המוחלט. נורמה זו הופכת את המרחב לחוג אוקלידי, בגלל עקרון החלוקה עם שארית במספרים השלמים. זו דרך נוספת להסביר מדוע החוג הוא ראשי - כל חוג אוקלידי הוא ראשי.
- החוג הוא תחום פריקות יחידה, כלומר כל איבר בו ניתן להציג כמכפלה של גורמים אי פריקים, עד כדי כפל באיבר הפיך (ראו גם המשפט היסודי של האריתמטיקה).
- המספרים השלמים הם אחד המקרים בהם אין הבדל בין איבר אי פריק לאיבר ראשוני. בחוגים אחרים אין הדבר הוא כך (ראו הרחבות בהמשך).
- שדה השברים של החוג הוא שדה המספרים הרציונליים. זו גם אחת הדרכים לתאר את בניית הרציונליים מלכתחילה.
- חוג זה אינו ארטיני, שהרי הסדרה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 2\mathbb{Z} \supset 4 \mathbb{Z} \supset 8 \mathbb{Z} \supset \dots } אינה מסתיימת.
הרחבות
לאחר הגדרת חוג השלמים, עלתה השאלה כיצד ניתן להרחיב אותו אבל "לא בהרבה", או במילים אחרות למצוא חוגים נוספים "בין" המספרים השלמים למספרים הרציונליים ואף למספרים הממשיים ולמספרים המרוכבים. אפשר להוסיף לחוג איברים ו"לסגור" את הקבוצה החדשה, כך שיווצר חוג מינימלי שיכיל את המספרים השלמים ואת האיברים החדשים.
פורמלית, לכל קבוצת מספרים מרוכבים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} , אפשר להגדיר את להגדיר כחיתוך כל תת-החוגים של שדה המספרים המרוכבים המכילים את הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} . קבוצה זו מגדירה חוג (כחיתוך של חוגים), וזהו החוג הקטן ביותר שמכיל את הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{Z}} ואת הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle d} .
למשל, אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{-5}} ניתן להראות כי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z[\sqrt { -5 } ]=\left\{ a+b\sqrt { -5 } :a,b\in Z \right\}} . בקבוצה זו ראשוניים ואי פריקים מקבלים משמעות שונה, שכן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3} לא ראשוני אבל כן אי פריק.
אובייקטים, בעיות אלה ופתרונותיהן נמצאים בבסיס של תורת המספרים האלגברית.
ראו גם
מערכות מספרים | ||
---|---|---|
מספרים | המספרים הטבעיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{N}} (מערכת פאנו) • חוג המספרים השלמים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{Z}} (מספרים חיוביים ושליליים, מספר שלם) • שדה המספרים הרציונליים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{Q}} (מספר רציונלי, מספר אי-רציונלי) • שדה המספרים הממשיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}} (הישר הממשי, מספר ממשי) • שדה המספרים המרוכבים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{C}} (המישור המרוכב, מספר מרוכב, מספר מדומה) | |
הרחבות של חוג המספרים השלמים | חוג השלמים של גאוס הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \mathbb{Z}[i]} • חוג השלמים האלגבריים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \overline{\mathbb{Z}}} • חוג השלמים של אייזנשטיין הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \mathbb{Z}[\omega]} | |
הרחבות של שדה המספרים הרציונליים | שדה מספרים • שדה המספרים הניתנים לבנייה • שדה המספרים האלגבריים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \overline{\mathbb{Q}}} (מספר אלגברי, מספר טרנסצנדנטי) • שדה המספרים ה-p-אדיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{Q}_p} (מספר p-אדי) • שדה ציקלוטומי | |
מעבר למרוכבים | אלגברת קווטרניונים (אלגברת הקווטרניונים של המילטון הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ {\mathbb{H}}} ) • אלגברת אוקטוניונים (אלגברת האוקטוניונים של קיילי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ {\mathbb{O}}} ) • אלגברות קיילי-דיקסון |
קישורים חיצוניים
- חוג המספרים השלמים, באתר MathWorld (באנגלית) המזהה לא מולא ולא נמצא בוויקינתונים, נא למלא את הפרמטר.
28710670חוג המספרים השלמים