קבוצות זרות

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש
דיאגרמת ון של שתי קבוצות זרות: A ו-B

במתמטיקה, זוג קבוצות הן זרות אם אין להן איבר משותף. לדוגמה, $ \left\{1,2,3\right\} $ ו- $ \left\{4,5,6\right\} $ הן קבוצות זרות.

הסבר

על פי ההגדרה, זוג קבוצות A ו B הן זרות אם החיתוך שלהן הוא הקבוצה הריקה, כלומר אם מתקיים:

$ A\cap B=\varnothing \, $

עבור כל אוסף של קבוצות מוגדר כי הקבוצות באוסף הן זרות בזוגות אם כל זוג קבוצות (שונות) באוסף הוא זר, כלומר לכל זוג אינדקסים שונים, i ו-j, מתקיים:

$ A_{i}\cap A_{j}=\varnothing \, $

לדוגמה, הקבוצות באוסף הקבוצות הבא { {1}, {2}, {3}, ... } הן זרות בזוגות.

אם {Ai} הוא אוסף קבוצות זרות בזוגות אז החיתוך שלו הוא ריק,

$ \bigcap _{i\in I}A_{i}=\varnothing $

לעומת זאת, הכיוון ההפוך אינו נכון: החיתוך של האוסף {{1, 2}, {2, 3}, {3, 1}} הוא ריק, אך הקבוצות בו אינן זרות בזוגות, למעשה אין שום זוג קבוצות זרות באוסף.

חלוקה

ערך מורחב – חלוקה (תורת הקבוצות)

חלוקה של קבוצה היא פירוק של הקבוצה לאוסף של תת-קבוצות זרות שאיחודן הוא הקבוצה עצמה.

במילים אחרות, בהינתן קבוצה X, הקבוצות $ A_{1},A_{2},\cdots ,A_{n}\subset X $ הן חלוקה של X, אם הן זרות בזוגות וכן :$ \bigcap _{i=1}^{n}A_{i}=\varnothing $.[א]

ראו גם

קישורים חיצוניים

ויקישיתוף מדיה וקבצים בנושא קבוצות זרות בוויקישיתוף

ביאורים

  1. לשם הפשטות, ניתנה דוגמה של אוסף בן מניה, אך חלוקה מוגדרת גם על אוסף לא בן-מניה של קבוצות.