פונקציה חד-חד-ערכית ועל

מתוך המכלול
קפיצה אל: ניווט, חיפוש
דוגמה לפונקציה חד-חד-ערכית ועל
Nuvola apps edu mathematics blue-p.svg

בערך זה
נעשה שימוש
בסימנים מוסכמים
מתחום המתמטיקה.
להבהרת הסימנים
ראו סימון מתמטי.

במתמטיקה, פונקציה חד-חד-ערכית ועל היא פונקציה שמתקיימות בה שתי תכונות: היא פונקציה חד-חד-ערכית והיא פונקציה על.

בניסוח פורמלי: פונקציה (מהקבוצה לקבוצה ) היא חד-חד-ערכית ועל, אם לכל קיים יחיד עבורו . אם קיימת פונקציה כזו, הקבוצות "שקולות" והן בעלות אותה עוצמה. פונקציה היא חד-חד-ערכית ועל אם ורק אם היא הפיכה, ולכן יחס השקילות הזה בין קבוצות הוא יחס סימטרי.

אם על הקבוצות מוגדר מבנה נוסף (פעולות אלגבריות, טופולוגיה, מטריקה וכדומה), אז פונקציה חד-חד-ערכית ועל ביניהן השומרת על המבנה נקראת איזומורפיזם.

פונקציה חד-חד-ערכית ועל מקבוצה אל עצמה נקראת תמורה. אוסף התמורות על קבוצה הוא חבורת הסימטריות של הקבוצה. למשל, הפונקציה המתאימה לכל מספר שלם את העוקב שלו, היא תמורה על המספרים השלמים. פונקציות חד-חד-ערכיות ועל הן מאבני הבניין של צפנים סימטריים מודרניים רבים בקריפטוגרפיה.

ראו גם

P mathematics.svg ערך זה הוא קצרמר בנושא מתמטיקה. אתם מוזמנים לתרום למכלול ולהרחיב אותו.