הוכחה בדרך השלילה
יש לערוך ערך זה. הסיבה היא: אין מקורות מתחום הספרות הפילוסופית לערך כלל על אף שכביכול מדובר במונח פילוסופי.
| ||
יש לערוך ערך זה. הסיבה היא: אין מקורות מתחום הספרות הפילוסופית לערך כלל על אף שכביכול מדובר במונח פילוסופי. |
בלוגיקה ובמתמטיקה הוכחה בדרך השלילה או הוכחה עקיפה[1] היא שיטת הוכחה לפיה אם הפרכת טיעון מסוים מובילה לסתירה לוגית — הטיעון נכון. במילים אחרות: אם הנחת טיעון מסוים מובילה לסתירה לוגית, אזי הטיעון ההפוך בהכרח נכון.
שיטה זו מבוססת על כלל השלישי מן הנמנע בלוגיקה, לפיו או שמשהו הוא נכון, או שהוא אינו נכון; עם זאת, ישנם זרמים במתמטיקה דוגמת האינטואיציוניזם שאינם מקבלים שיטה זו, ובפרט דוחים את הטיעון ששלילה כפולה[דרושה הבהרה] משמעותה נכונות ועל כן, אינם מבינים הוכחה בדרך השלילה כהוכחה קבילה.
אטימולוגיה
המונח נקרא באנגלית Proof by contradiction ומקורו מלטינית: Reductio ad absurdum – רֶדּוּקְצְיוֹ אַדּ אַבְּסוּרְדּוּם - רדוקציה לאבסורד ("צמצום לאבסורד").
מתמטיקה
הוכחה בדרך השלילה נפוצה למדי במתמטיקה. אוקלידס הִרְבָּה להשתמש בהוכחות בדרך השלילה, וכמה מהן התפרסמו במיוחד, כמו ההוכחה לכך שאין מספר ראשוני שהוא הגדול ביותר; כלומר, שיש אינסוף מספרים ראשוניים. ההוכחה מובאת במלואה בערך קיומם של אינסוף מספרים ראשוניים. הוכחה על דרך השלילה נוספת, הידועה כבר מן הזמן העתיק ומופיעה למשל בכתבי אריסטו היא ההוכחה ששורש 2 אינו רציונלי.
פילוסופיה
ההוכחה הראשונה על דרך השלילה בפילוסופיה מיוחסת לפילוסופים האלאטים, אף על פי כן, נראה שכבר הפיתגוראים השתמשו בה.
יש הטוענים[דרוש מקור] כי ראשון המשתמשים בה היה זנון מאליאה, שכן הוא הוכיח את טענת מוֹרוֹ פארמנידס באמצעות 'רדוקציה אד אבסורדום' של טענות מתנגדיו. הטענות אותן הפריך באופן זה הן: ישנה תנועה בעולם. וכן: ישנו ריבוי בעולם. היסטוריון המתמטיקה סזאבו סבור כי כבר בשירו של פארמנידס ניכר מבנה הרדוקציה אד אבסורדום. פארמנידס מניח כי ישנו 'אין' (שהוא מזהה עם חלל ריק) ומוכיח כי מדובר בסתירה עצמית. כך הוא מוכיח כי אין בעולם ריק, לכן העולם מלא, ומכאן שהתנועה בו אינה אפשרית.
הוכחת טענה בדרך השלילה נפוצה בוויכוחים ובדיבייטינג לשם השגת ניצחון על היריב הרעיוני. עם זאת, היא יכולה לשמש כדרך לבירור האמת, שכן ניתן להצביע בה על כשלים רעיוניים בדברי הדובר השני, כפי שתראינה שתי הדוגמאות הבאות:
- אבי: עליך לכבד את דעותיו של גדי, שכן כל הדעות תקפות במידה שווה ולא ניתן להכחישן.
- בני: מה לגבי דעתו של דוד? (כאשר דוד מחזיק בדעה שיש בדיון קונצנזוס על אי-נכונותה).
- אבי: אני מסכים שניתן להכחיש את דעתו של דוד.
- בני: אם ניתן להכחיש את דעותיו של דוד, הרי שלא נכון שלא ניתן להכחיש אף דעה. על כן, ניתן להכחיש את דעותיו של גדי, ואני יכול לעשות זאת עם נימוקים מספיקים.
דוגמה פשוטה יותר ללא צורך באזכור דעתו של דוד:
- אבי: עליך לכבד את דעותיו של גדי, שכן כל הדעות תקפות במידה שווה ולא ניתן להכחישן.
- בני:
- אני מכחיש דעתך וטוען שהיא שגויה.
- לפי הטיעון שלך, דעה 1 תקפה כמו כל שאר הדעות.
- מצד שני, הדעה שלך גם נוגדת וסותרת את 1, שכן היא ההפך הגמור ממנה.
- מסקנות 2 ו־3 סותרות זו את זו, ולכן ההנחה הבסיסית שלך שגויה ופסולה.
בחכמת התורה
בתלמוד מופיעה לעיתים קרובות הוכחה על דרך השלילה. כך לדוגמה בתלמוד בבלי, מסכת שבת, דף כ"א עמוד ב', מובאת דעה המוכיחה שמצווה להדליק נר חנוכה מתחת לעשרה טפחים (כמטר), על ידי קבלת ההנחה, באופן זמני ולצורך העניין, שההפך נכון (שאין להגביל את גובה נר חנוכה ל-10 טפחים), ומוכיחה שאם נניח כך, יש לזה סתירה ממשנה[2] מפורשת. גם בשאר הספרות היהודית נעשה שימוש בהוכחות בדרך השלילה. כך למשל בספר "משנה תורה"[3] מביא הרמב"ם הוכחה לקיום הבחירה החופשית: אילו לא הייתה בחירה חופשית, לא היה טעם בתורה, ולא הייתה הצדקה לשכר ועונש.
ראו גם
קישורים חיצוניים
מיזמי קרן ויקימדיה |
---|
ערך מילוני בוויקימילון: אלימינציה |
- הוכחה בדרך השלילה, באתר אנציקלופדיה בריטניקה (באנגלית)
- Proof by contradiction, Art of Problem Solving (באנגלית)
- The Definitive Glossary of Higher Math Jargon, Math Vault (באנגלית)
הערות שוליים
- ^ תלמה לויתן, 8.1, יסודות החשיבה המתמטית : צעדים ראשונים במתמטיקה מתקדמת, מכון מופ"ת, תשע"ג 2012. (בעברית)
- ^ משנה, מסכת בבא קמא, פרק ו', משנה ו'. במשנה זאת נאמר שאם אדם רוכב על גמל טעון פשתן שנדלק מנר חנוכה, אין מניח הנר חייב לפצותו. הוכחת הגמרא היא בכך שאילו היה אפשר להניח בגובה רב יותר, בעל הגמל היה יכול לטעון שהיה על מניח הנר להניח אותו בגובה רב, ולחייב אותו בתשלום.
- ^ משנה תורה לרמב"ם, הלכות תשובה, פרק ה', הלכה ד'
הוכחה בדרך השלילה34184317Q184899