דל במערכות צירים שונות

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

באנליזה וקטורית ניתן לכתוב אופרטורים שונים, הקשורים לאופרטור דל (המסומל באמצעות הסימן נבלה), בדרכים שונות במערכות צירים שונות.

הערה: הנוסחאות שבדף זה כתובות לפי הכתיב הפיזיקלי המקובל. בקואורדינטות כדוריות, $ \theta $ היא הזווית בין ציר z ווקטור הרדיוס המחבר את הראשית עם הנקודה בה עוסקים. $ \phi $ היא הזווית בין היטל וקטור הרדיוס על מישור x-y, ובין ציר x.

קואורדינטות קרטזיות (x,y,z) קואורדינטות גליליות (ρ,φ,z) קואורדינטות כדוריות (r,θ,φ) קואורדינטות גליליות פרבוליות (σ,τ,z)
הגדרת
מערכת
הצירים
$ {\begin{matrix}\rho &=&{\sqrt {x^{2}+y^{2}}}\\\phi &=&\arctan(y/x)\\z&=&z\end{matrix}} $ $ {\begin{matrix}x&=&\rho \cos \phi \\y&=&\rho \sin \phi \\z&=&z\end{matrix}} $ $ {\begin{matrix}x&=&r\sin \theta \cos \phi \\y&=&r\sin \theta \sin \phi \\z&=&r\cos \theta \end{matrix}} $ $ {\begin{matrix}x&=&\sigma \tau \\y&=&{\frac {1}{2}}\left(\tau ^{2}-\sigma ^{2}\right)\\z&=&z\end{matrix}} $
$ {\begin{matrix}r&=&{\sqrt {x^{2}+y^{2}+z^{2}}}\\\theta &=&\arctan {\left({\frac {\sqrt {x^{2}+y^{2}}}{z}}\right)}\\\phi &=&\arctan(y/x)\\\end{matrix}} $ $ {\begin{matrix}\rho &=&r\sin(\theta )\\\phi &=&\phi \\z&=&r\cos(\theta )\end{matrix}} $ $ {\begin{matrix}r&=&{\sqrt {x^{2}+y^{2}+z^{2}}}\\\theta &=&\arctan {\left({\frac {\sqrt {x^{2}+y^{2}}}{z}}\right)}\\\phi &=&\arctan(y/x)\\\end{matrix}} $ $ {\begin{matrix}\rho \cos \phi &=&\sigma \tau \\\rho \sin \phi &=&{\frac {1}{2}}\left(\tau ^{2}-\sigma ^{2}\right)\\z&=&z\end{matrix}} $
הגדרת
וקטורי
היחידה
$ {\begin{matrix}{\boldsymbol {\hat {\rho }}}&=&{\frac {x}{\rho }}\mathbf {\hat {x}} +{\frac {y}{\rho }}\mathbf {\hat {y}} \\{\boldsymbol {\hat {\phi }}}&=&-{\frac {y}{\rho }}\mathbf {\hat {x}} +{\frac {x}{\rho }}\mathbf {\hat {y}} \\\mathbf {\hat {z}} &=&\mathbf {\hat {z}} \end{matrix}} $ $ {\begin{matrix}\mathbf {\hat {x}} &=&\cos \phi {\boldsymbol {\hat {\rho }}}-\sin \phi {\boldsymbol {\hat {\phi }}}\\\mathbf {\hat {y}} &=&\sin \phi {\boldsymbol {\hat {\rho }}}+\cos \phi {\boldsymbol {\hat {\phi }}}\\\mathbf {\hat {z}} &=&\mathbf {\hat {z}} \end{matrix}} $ $ {\begin{matrix}\mathbf {\hat {x}} &=&\sin \theta \cos \phi {\boldsymbol {\hat {r}}}+\cos \theta \cos \phi {\boldsymbol {\hat {\theta }}}-\sin \phi {\boldsymbol {\hat {\phi }}}\\\mathbf {\hat {y}} &=&\sin \theta \sin \phi {\boldsymbol {\hat {r}}}+\cos \theta \sin \phi {\boldsymbol {\hat {\theta }}}+\cos \phi {\boldsymbol {\hat {\phi }}}\\\mathbf {\hat {z}} &=&\cos \theta {\boldsymbol {\hat {r}}}-\sin \theta {\boldsymbol {\hat {\theta }}}\\\end{matrix}} $ $ {\begin{matrix}{\boldsymbol {\hat {\sigma }}}&=&{\frac {\tau }{\sqrt {\tau ^{2}+\sigma ^{2}}}}\mathbf {\hat {x}} -{\frac {\sigma }{\sqrt {\tau ^{2}+\sigma ^{2}}}}\mathbf {\hat {y}} \\{\boldsymbol {\hat {\tau }}}&=&{\frac {\sigma }{\sqrt {\tau ^{2}+\sigma ^{2}}}}\mathbf {\hat {x}} +{\frac {\tau }{\sqrt {\tau ^{2}+\sigma ^{2}}}}\mathbf {\hat {y}} \\\mathbf {\hat {z}} &=&\mathbf {\hat {z}} \end{matrix}} $
$ {\begin{matrix}\mathbf {\hat {r}} &=&{\frac {x\mathbf {\hat {x}} +y\mathbf {\hat {y}} +z\mathbf {\hat {z}} }{r}}\\{\boldsymbol {\hat {\theta }}}&=&{\frac {xz\mathbf {\hat {x}} +yz\mathbf {\hat {y}} -\rho ^{2}\mathbf {\hat {z}} }{r\rho }}\\{\boldsymbol {\hat {\phi }}}&=&{\frac {-y\mathbf {\hat {x}} +x\mathbf {\hat {y}} }{\rho }}\end{matrix}} $ $ {\begin{matrix}{\boldsymbol {\hat {\rho }}}&=&\sin \theta \mathbf {\hat {r}} +\cos \theta {\boldsymbol {\hat {\theta }}}\\{\boldsymbol {\hat {\phi }}}&=&{\boldsymbol {\hat {\phi }}}\\\mathbf {\hat {z}} &=&\cos \theta \mathbf {\hat {r}} -\sin \theta {\boldsymbol {\hat {\theta }}}\\\end{matrix}} $ $ {\begin{matrix}\mathbf {\hat {r}} &=&{\frac {\rho }{r}}{\boldsymbol {\hat {\rho }}}+{\frac {z}{r}}\mathbf {\hat {z}} \\{\boldsymbol {\hat {\theta }}}&=&{\frac {z}{r}}{\boldsymbol {\hat {\rho }}}-{\frac {\rho }{r}}\mathbf {\hat {z}} \\{\boldsymbol {\hat {\phi }}}&=&{\boldsymbol {\hat {\phi }}}\end{matrix}} $
שדה וקטורי $ \mathbf {A} $ $ A_{x}\mathbf {\hat {x}} +A_{y}\mathbf {\hat {y}} +A_{z}\mathbf {\hat {z}} $ $ A_{\rho }{\boldsymbol {\hat {\rho }}}+A_{\phi }{\boldsymbol {\hat {\phi }}}+A_{z}{\boldsymbol {\hat {z}}} $ $ A_{r}{\boldsymbol {\hat {r}}}+A_{\theta }{\boldsymbol {\hat {\theta }}}+A_{\phi }{\boldsymbol {\hat {\phi }}} $ $ A_{\sigma }{\boldsymbol {\hat {\sigma }}}+A_{\tau }{\boldsymbol {\hat {\tau }}}+A_{\phi }{\boldsymbol {\hat {z}}} $
גרדיאנט $ \nabla f $ $ {\partial f \over \partial x}\mathbf {\hat {x}} +{\partial f \over \partial y}\mathbf {\hat {y}} +{\partial f \over \partial z}\mathbf {\hat {z}} $ $ {\partial f \over \partial \rho }{\boldsymbol {\hat {\rho }}}+{1 \over \rho }{\partial f \over \partial \phi }{\boldsymbol {\hat {\phi }}}+{\partial f \over \partial z}{\boldsymbol {\hat {z}}} $ $ {\partial f \over \partial r}{\boldsymbol {\hat {r}}}+{1 \over r}{\partial f \over \partial \theta }{\boldsymbol {\hat {\theta }}}+{1 \over r\sin \theta }{\partial f \over \partial \phi }{\boldsymbol {\hat {\phi }}} $ $ {\frac {1}{\sqrt {\sigma ^{2}+\tau ^{2}}}}{\partial f \over \partial \sigma }{\boldsymbol {\hat {\sigma }}}+{\frac {1}{\sqrt {\sigma ^{2}+\tau ^{2}}}}{\partial f \over \partial \tau }{\boldsymbol {\hat {\tau }}}+{\partial f \over \partial z}{\boldsymbol {\hat {z}}} $
דיברגנץ $ \nabla \cdot \mathbf {A} $ $ {\partial A_{x} \over \partial x}+{\partial A_{y} \over \partial y}+{\partial A_{z} \over \partial z} $ $ {1 \over \rho }{\partial \left(\rho A_{\rho }\right) \over \partial \rho }+{1 \over \rho }{\partial A_{\phi } \over \partial \phi }+{\partial A_{z} \over \partial z} $ $ {1 \over r^{2}}{\partial \left(r^{2}A_{r}\right) \over \partial r}+{1 \over r\sin \theta }{\partial \over \partial \theta }\left(A_{\theta }\sin \theta \right)+{1 \over r\sin \theta }{\partial A_{\phi } \over \partial \phi } $ $ {\frac {1}{\sigma ^{2}+\tau ^{2}}}{\partial A_{\sigma } \over \partial \sigma }+{\frac {1}{\sigma ^{2}+\tau ^{2}}}{\partial A_{\tau } \over \partial \tau }+{\partial A_{z} \over \partial z} $
קרל (רוטור) $ \nabla \times \mathbf {A} $ $ {\begin{matrix}\displaystyle \left({\partial A_{z} \over \partial y}-{\partial A_{y} \over \partial z}\right)\mathbf {\hat {x}} &+\\\displaystyle \left({\partial A_{x} \over \partial z}-{\partial A_{z} \over \partial x}\right)\mathbf {\hat {y}} &+\\\displaystyle \left({\partial A_{y} \over \partial x}-{\partial A_{x} \over \partial y}\right)\mathbf {\hat {z}} &\ \end{matrix}} $ $ {\begin{matrix}\displaystyle \left({1 \over \rho }{\partial A_{z} \over \partial \phi }-{\partial A_{\phi } \over \partial z}\right){\boldsymbol {\hat {\rho }}}&+\\\displaystyle \left({\partial A_{\rho } \over \partial z}-{\partial A_{z} \over \partial \rho }\right){\boldsymbol {\hat {\phi }}}&+\\\displaystyle {1 \over \rho }\left({\partial \left(\rho A_{\phi }\right) \over \partial \rho }-{\partial A_{\rho } \over \partial \phi }\right){\boldsymbol {\hat {z}}}&\ \end{matrix}} $ $ {\begin{matrix}\displaystyle {1 \over r\sin \theta }\left({\partial \over \partial \theta }\left(A_{\phi }\sin \theta \right)-{\partial A_{\theta } \over \partial \phi }\right){\boldsymbol {\hat {r}}}&+\\\displaystyle {1 \over r}\left({1 \over \sin \theta }{\partial A_{r} \over \partial \phi }-{\partial \over \partial r}\left(rA_{\phi }\right)\right){\boldsymbol {\hat {\theta }}}&+\\\displaystyle {1 \over r}\left({\partial \over \partial r}\left(rA_{\theta }\right)-{\partial A_{r} \over \partial \theta }\right){\boldsymbol {\hat {\phi }}}&\ \end{matrix}} $ $ {\begin{matrix}\displaystyle \left({\frac {1}{\sqrt {\sigma ^{2}+\tau ^{2}}}}{\partial A_{z} \over \partial \tau }-{\partial A_{\tau } \over \partial z}\right){\boldsymbol {\hat {\sigma }}}&-\\\displaystyle \left({\frac {1}{\sqrt {\sigma ^{2}+\tau ^{2}}}}{\partial A_{z} \over \partial \sigma }-{\partial A_{\sigma } \over \partial z}\right){\boldsymbol {\hat {\tau }}}&+\\\displaystyle {\frac {1}{\sqrt {\sigma ^{2}+\tau ^{2}}}}\left({\partial \left(\rho A_{\phi }\right) \over \partial \rho }-{\partial A_{\rho } \over \partial \phi }\right){\boldsymbol {\hat {z}}}&\ \end{matrix}} $
לפלסיאן $ \Delta f=\nabla ^{2}f $ $ {\partial ^{2}f \over \partial x^{2}}+{\partial ^{2}f \over \partial y^{2}}+{\partial ^{2}f \over \partial z^{2}} $ $ {1 \over \rho }{\partial \over \partial \rho }\left(\rho {\partial f \over \partial \rho }\right)+{1 \over \rho ^{2}}{\partial ^{2}f \over \partial \phi ^{2}}+{\partial ^{2}f \over \partial z^{2}} $ $ {1 \over r^{2}}{\partial \over \partial r}\!\left(r^{2}{\partial f \over \partial r}\right)\!+\!{1 \over r^{2}\!\sin \theta }{\partial \over \partial \theta }\!\left(\sin \theta {\partial f \over \partial \theta }\right)\!+\!{1 \over r^{2}\!\sin ^{2}\theta }{\partial ^{2}f \over \partial \phi ^{2}} $ $ {\frac {1}{\sigma ^{2}+\tau ^{2}}}\left({\frac {\partial ^{2}f}{\partial \sigma ^{2}}}+{\frac {\partial ^{2}f}{\partial \tau ^{2}}}\right)+{\frac {\partial ^{2}f}{\partial z^{2}}} $
לפלסיאן וקטורי $ \Delta \mathbf {A} =\nabla ^{2}\mathbf {A} $ $ \Delta A_{x}\mathbf {\hat {x}} +\Delta A_{y}\mathbf {\hat {y}} +\Delta A_{z}\mathbf {\hat {z}} $ $ {\begin{matrix}\displaystyle \left(\Delta A_{\rho }-{A_{\rho } \over \rho ^{2}}-{2 \over \rho ^{2}}{\partial A_{\phi } \over \partial \phi }\right){\boldsymbol {\hat {\rho }}}&+\\\displaystyle \left(\Delta A_{\phi }-{A_{\phi } \over \rho ^{2}}+{2 \over \rho ^{2}}{\partial A_{\rho } \over \partial \phi }\right){\boldsymbol {\hat {\phi }}}&+\\\displaystyle \left(\Delta A_{z}\right){\boldsymbol {\hat {z}}}&\ \end{matrix}} $ $ {\begin{matrix}\left(\Delta A_{r}-{2A_{r} \over r^{2}}-{2 \over r^{2}\sin \theta }{\partial \left(A_{\theta }\sin \theta \right) \over \partial \theta }-{2 \over r^{2}\sin \theta }{\partial A_{\phi } \over \partial \phi }\right){\boldsymbol {\hat {r}}}&+\\\left(\Delta A_{\theta }-{A_{\theta } \over r^{2}\sin ^{2}\theta }+{2 \over r^{2}}{\partial A_{r} \over \partial \theta }-{2\cos \theta \over r^{2}\sin ^{2}\theta }{\partial A_{\phi } \over \partial \phi }\right){\boldsymbol {\hat {\theta }}}&+\\\left(\Delta A_{\phi }-{A_{\phi } \over r^{2}\sin ^{2}\theta }+{2 \over r^{2}\sin \theta }{\partial A_{r} \over \partial \phi }+{2\cos \theta \over r^{2}\sin ^{2}\theta }{\partial A_{\theta } \over \partial \phi }\right){\boldsymbol {\hat {\phi }}}&\end{matrix}} $
העתק אינפיניטסימלי $ d\mathbf {l} =dx\mathbf {\hat {x}} +dy\mathbf {\hat {y}} +dz\mathbf {\hat {z}} $ $ d\mathbf {l} =d\rho {\boldsymbol {\hat {\rho }}}+\rho d\phi {\boldsymbol {\hat {\phi }}}+dz{\boldsymbol {\hat {z}}} $ $ d\mathbf {l} =dr\mathbf {\hat {r}} +rd\theta {\boldsymbol {\hat {\theta }}}+r\sin \theta d\phi {\boldsymbol {\hat {\phi }}} $ $ d\mathbf {l} ={\sqrt {\sigma ^{2}+\tau ^{2}}}d\sigma {\boldsymbol {\hat {\sigma }}}+{\sqrt {\sigma ^{2}+\tau ^{2}}}d\tau {\boldsymbol {\hat {\tau }}}+dz{\boldsymbol {\hat {z}}} $
וקטור שטח אינפיניטסימלי $ {\begin{matrix}d\mathbf {S} =&dy\,dz\,\mathbf {\hat {x}} +\\&dx\,dz\,\mathbf {\hat {y}} +\\&dx\,dy\,\mathbf {\hat {z}} \end{matrix}} $ $ {\begin{matrix}d\mathbf {S} =&\rho \,d\phi \,dz\,{\boldsymbol {\hat {\rho }}}+\\&d\rho \,dz\,{\boldsymbol {\hat {\phi }}}+\\&\rho \,d\rho d\phi \,\mathbf {\hat {z}} \end{matrix}} $ $ {\begin{matrix}d\mathbf {S} =&r^{2}\sin \theta \,d\theta \,d\phi \,\mathbf {\hat {r}} +\\&r\sin \theta \,dr\,d\phi \,{\boldsymbol {\hat {\theta }}}+\\&r\,dr\,d\theta \,{\boldsymbol {\hat {\phi }}}\end{matrix}} $ $ {\begin{matrix}d\mathbf {S} =&{\sqrt {\sigma ^{2}+\tau ^{2}}},d\tau \,dz\,{\boldsymbol {\hat {\sigma }}}+\\&{\sqrt {\sigma ^{2}+\tau ^{2}}}d\sigma \,dz\,{\boldsymbol {\hat {\tau }}}+\\&\sigma ^{2}+\tau ^{2}d\sigma ,d\tau \,\mathbf {\hat {z}} \end{matrix}} $
יחידת נפח אינפיניטסימלית $ dV=dx\,dy\,dz\, $ $ dV=\rho \,d\rho \,d\phi \,dz\, $ $ dV=r^{2}\sin \theta \,dr\,d\theta \,d\phi \, $ $ dV=\left(\sigma ^{2}+\tau ^{2}\right)d\sigma d\tau dz, $
כללים חשובים:
  1. $ \operatorname {div\ grad\ } f=\nabla \cdot (\nabla f)=\nabla ^{2}f=\Delta f $ (לפלסיאן)
  2. $ \operatorname {curl\ grad\ } f=\nabla \times (\nabla f)=\mathbf {0} $
  3. $ \operatorname {div\ curl\ } \mathbf {A} =\nabla \cdot (\nabla \times \mathbf {A} )=0 $
  4. $ \operatorname {curl\ curl\ } \mathbf {A} =\nabla \times (\nabla \times \mathbf {A} )=\nabla (\nabla \cdot \mathbf {A} )-\nabla ^{2}\mathbf {A} $
  5. $ \Delta fg=f\Delta g+2\nabla f\cdot \nabla g+g\Delta f $
הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0

דל במערכות צירים שונות22378235Q2605462