חיבור

מתוך המכלול
קפיצה אל: ניווט, חיפוש
הדגמה של הפעולה 2+3

באריתמטיקה, חיבור היא פעולה יסודית שמשמעותה צירוף של שני אוספי פריטים לאוסף הכולל את שניהם. את החיבור מסמנים בעזרת הסימן + (פלוס). למספרים שמחברים קוראים "מחוברים" ולתוצאה קוראים "סכום". התמונה משמאל מדגימה את הביטוי 2+3=5: אם נצרף 3 צורות מלמעלה ו-2 צורות מלמטה, נקבל ביחד 5 צורות. לפעולה קוראים "פלוס" או "ועוד" לכן את הביטוי ניתן לקרוא כ"שתים ועוד שלוש" או "שתים פלוס שלוש". הדוגמה מדגימה את המשמעות היסודית של חיבור, היא חיבור מספרים טבעיים, אולם ניתן להגדיר גם חיבור מספרים שליליים, אי-רציונליים ואף מרוכבים, וכמו כן חיבור פונקציות, וקטורים, מטריצות, עוצמות ועוד.

הגדרות

חיבור מספרים טבעיים ניתן להגדיר בצורה נאיבית בעזרת לוח החיבור:

לוח החיבור
9 8 7 6 5 4 3 2 1 0 +
9 8 7 6 5 4 3 2 1 0 0
10 9 8 7 6 5 4 3 2 1 1
11 10 9 8 7 6 5 4 3 2 2
12 11 10 9 8 7 6 5 4 3 3
13 12 11 10 9 8 7 6 5 4 4
14 13 12 11 10 9 8 7 6 5 5
15 14 13 12 11 10 9 8 7 6 6
16 15 14 13 12 11 10 9 8 7 7
17 16 15 14 13 12 11 10 9 8 8
18 17 16 15 14 13 12 11 10 9 9

הלוח משמש לחיבור מספרים חד ספרתיים, כדי לחבר מספרי גדולים יותר יש לכתוב אותם זה מעל זה ולחבר את הטורים מימין לשמאל, וכאשר מתקבל מספר הגדול מ-9 יש להוסיף את ספרת העשרות שלו לטור הבא.

כדי להגדיר בצורה פורמלית מגדירים תוך שימוש באקסיומת העוקב של אקסיומות פאנו (לכל מספר טבעי קיים מספר עוקב ולא קיים מספר שהעוקב שלו 0), שאותן מקיימים המספרים הטבעיים. אם הוא הסימון לעוקב של , אז החיבור מוגדר ברקורסיה כך:

  • .
  • .

לדוגמה: .

מספרים רציונלים

חיבור מספרים רציונליים מוגדר בצורה הבאה:

מספרים ממשיים

חיבור של מספרים ממשיים מוגדר כגבול של הטור המהווה חיבור הטורים המייצגים את המחוברים.

מספרים מרוכבים

חיבור של מספרים מרוכבים מוגדר בצורה הבאה:

עוצמות

הסכום כאשר a, b עוצמות מוגדר כך:
בוחרים קבוצות A, B זרות המקיימות , ואז העוצמה מוגדרת כעוצמת האיחוד .

וקטורים

חיבור של וקטורים הוא חיבור של הקואורדינטות שלהם. כדי לחבר את ההצגה הגאומטרית, משתמשים בכלל המקבילית.

סוגריים

כאשר יש לנו תרגיל עם סוגריים, כאשר מופיע הסימן + לפני הסוגריים, ניתן "לפתוח" את הסוגריים, או במילים אחרות להוריד או להעלים אותם. משום שפעולת החיבור לפני סוגריים לא תשנה את מה שיש בתוך הסוגריים ולא יהיה הבדל אם התרגיל יהיה גם ללא סוגריים, מה שמבדיל בין שאר הפעולות המתמטיות שכאשר הן נמצאות לפני סוגריים לא ניתן להעלים את הסוגריים ללא ביצוע פעולה מסוימת התלויה בסימן עצמו.

תכונות

לחיבור כמה תכונות בסיסיות:

פעולות דומות

ראו גם

קישורים חיצוניים

הוכחת תכונת החילופיות של חיבור