התפלגות קושי
(הופנה מהדף התפלגות קושי-לורנץ)
פונקציית צפיפות ההסתברות | |
פונקציית ההסתברות המצטברת | |
---|---|
מאפיינים | |
פרמטרים | החציון, סקלה |
תומך | |
פונקציית צפיפות הסתברות (pdf) | |
פונקציית ההסתברות המצטברת (cdf) | |
תוחלת | לא מוגדרת |
סטיית תקן | לא מוגדרת |
חציון | |
ערך שכיח | |
שונות | לא מוגדרת |
אנטרופיה | |
פונקציה יוצרת מומנטים (mgf) | לא מוגדרת |
צידוד | לא מוגדר |
גבנוניות | לא מוגדרת |
התפלגות קוֹשִי (Cauchy), על שם המתמטיקאי הצרפתי אוגוסטן לואי קושי, היא התפלגות רציפה בעלת חשיבות במתמטיקה ובמספר תחומים בפיזיקה. בקרב פיזיקאים ההתפלגות מכונה לעיתים פילוג לורנץ (Lorentz), פילוג ברייט-ויגנר (Breit-Wigner) או לורנציאן.
הגדרה
התפלגות קושי מוגדרת כהתפלגות רציפה בעלת פונקציית צפיפות ההסתברות
כאשר הוא פרמטר מיקום, אשר קובע את החציון של ההתפלגות, ואילו הוא פרמטר סקלה, אשר קובע את רוחב ההתפלגות.
תכונות
תכונה יוצאת דופן של התפלגות קושי היא שהתוחלת והשונות שלה אינם מוגדרים, כמו גם המומנטים מסדר גבוה יותר. לעומת זאת, החציון והשכיח מוגדרים ושניהם שווים .
התפלגויות | ||
---|---|---|
התפלגויות בדידות כלליות | אחידה בדידה • בינומית • מולטינומית • בינומית שלילית • ברנולי • גאומטרית • היפרגאומטרית • היפרגאומטרית שלילית • מנוונת • פואסון | |
התפלגויות רציפות כלליות | אחידה רציפה • בטא • גמא • לוג-נורמלית • מעריכית (אקספוננציאלית) • נורמלית (גאוסית) • לפלס • משולשת • פארטו • ריילי • קושי • כי בריבוע | |
התפלגויות בפיזיקה סטטיסטית | בולצמן • בוז-איינשטיין • מקסוול-בולצמן • פרמי-דיראק • זטא | |
התפלגויות נוספות | התפלגות t • התפלגות F • ארלנג • וייבול • לוגיסטית | |
סוגי התפלגויות | בדידה • רציפה • מותנית • נורמלית מוכללת • זנב עבה • לא פריקה • משותפת |