התפלגות מולטינומית

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

התפלגות מולטינומית היא התפלגות בה "חברות" סדרות שונות, אשר אין משמעות לסדר בתוך כל אחת מהן.

כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_k} הם מספר הפריטים (ההצלחות) בקטגוריה k, וכאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle p_k} היא ההסתברות להצלחה בקטגוריה k, וכאשר n הוא מספר הניסויים, פונקציית ההסתברות של התפלגות מולטינומית מוגדרת באופן הבא:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} f(x_1,\ldots,x_k;n,p_1,\ldots,p_k) & {} = \Pr(X_1 = x_1\mbox{ and }\dots\mbox{ and }X_k = x_k) \\ \\ & {} = \begin{cases} { \displaystyle {n! \over x_1!\cdots x_k!}p_1^{x_1}\cdots p_k^{x_k}}, \quad & \mbox{when } \sum_{i=1}^k x_i=n \\ \\ 0 & \mbox{otherwise,} \end{cases} \end{align} }

דוגמה

אם בשורת הטקסים עומדים 10 דגלי ארצות הברית, 5 דגלי ישראל, 4 דגלי גרמניה ועוד 4 דגלי פולין - מספר הפרמוטציות לסדר את הדגלים אינו 23!, שהרי אין כל משמעות לסידור הפנימי של הדגלים בינם לבין עצמם.

אם כן הפתרון יהיה:

23! חלקי: {10! (הפרמוטציות של דגלי ארצות הברית) כפול 5! (הפרמוטציות של דגלי ישראל) כפול 4! (הפרמוטציות של דגלי גרמניה) כפול 4! (הפרמוטציות של דגלי פולין)}.

דרך נוספת להגיע אל אותו פתרון יהיה בדרך הבחירה: נבחר 10 דגלים מתוך 23, נכפיל ב־5 דגלים מתוך 13, נכפיל ב־4 דגלים מתוך 8, נכפיל ב־4 דגלים מתוך 4 (שזה 1 כמובן).



קישורים חיצוניים

ערך זה הוא קצרמר בנושא מתמטיקה. אתם מוזמנים לתרום למכלול ולהרחיב אותו.
הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0

התפלגות מולטינומית29507850Q1147928