אופרטור הרמיטי

מתוך המכלול, האנציקלופדיה היהודית
(הופנה מהדף הרמיטי)
קפיצה לניווט קפיצה לחיפוש

בערך זה
נעשה שימוש
בסימנים מוסכמים
מתחום המתמטיקה.
להבהרת הסימנים
ראו סימון מתמטי.

במתמטיקה, אופרטור הרמיטי הוא אופרטור ליניארי ממרחב מכפלה פנימית לעצמו, הצמוד לעצמו (כלומר שווה לאופרטור הצמוד אליו).

כל האופרטורים ההרמיטיים הם לכסינים אוניטרית, והם מקיימים את התכונה שכל הערכים העצמיים שלהם ממשיים. האופרטורים האלו קרויים כך על-שם המתמטיקאי שארל הרמיט.

לאופרטורים הרמיטיים תפקיד מרכזי במכניקת הקוונטים, שבה כל גודל פיזיקלי מדיד (דוגמת אנרגיה, תנע או תנע זוויתי) מיוצג על ידי אופרטור הרמיטי. תוצאות המדידה האפשריות הן הערכים העצמיים של האופרטור.

אופרטורים במרחב מכפלה פנימית

יהי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle H} מרחב מכפלה פנימית מעל המרוכבים. לכל אופרטור ליניארי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A \colon H \to H} מוגדר האופרטור הצמוד , לפי החוק

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \lang Ax , y \rang = \lang x, A^* y \rang}

(את האופרטור הצמוד מסמנים לפעמים גם , מבטאים כ"A דאגר"). לדוגמה, אם הוא מרחב הילברט ו-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} אופרטור חסום, אז לפי משפט ההצגה של ריס גם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A^*} חסום. אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A^* = A} , אומרים ש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} צמוד לעצמו.

משפט הפירוק הספקטרלי מבטיח שכל אופרטור קומפקטי צמוד לעצמו הוא לכסין אוניטרית. יתרה מזו, לכל וקטור עצמי של עם ערך עצמי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda} , מתקיים

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \lambda \lang v, v\rang = \lang \lambda v , v \rang = \lang Av, v\rang = \lang v, A^* v\rang = \lang v, A v \rang= \lang v, \lambda v\rang = \bar{\lambda}\lang v, v\rang} ,

ולכן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda} ממשי. מכאן שיש למרחב בסיס אורתוגונלי (ובמקרה האינסוף-ממדי מערכת אורתונורמלית שלמה) שהאופרטור מותח כל איבר שלו בגורם ממשי.

כל אופרטור אפשר לפרק לסכום של מרכיב הרמיטי ומרכיב אנטי-הרמיטי, לפי הנוסחה הפשוטה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ A = \frac{1}{2}(A+A^*)+\frac{1}{2}(A-A^*)} . מחצית הסכום הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A+A^*} היא, אם כך, המרכיב ההרמיטי של האופרטור. גם המכפלות ו- תמיד הרמיטיות, ויש להן תכונה שימושית נוספת: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \|AA^*\|=\|A\|\|A^*\|=\|A\|^2} , כאשר מסמן את הנורמה של כאופרטור.

אופרטורים על מרחב סופי

על מרחב הווקטורים המרוכבים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \mathbb{C}^n} מוגדרת המכפלה הפנימית הסטנדרטית הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \lang \vec{x}, \vec{y} \rang = \sum_{k=1}^{n} x_k \bar{y}_k } אותה אפשר לפרש ככפל מטריצות של וקטור שורה בווקטור עמודה (האחרון מוצמד על ידי צמוד מרוכב). לכל מטריצה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A \in \operatorname{M}_n(\mathbb{C})} מתאים אופרטור הכפל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{z} \mapsto A \vec{z}} (ביתר דיוק: A היא המטריצה המייצגת של אופרטור הכפל ביחס לבסיס הסטנדרטי). האופרטור הצמוד מתאים למטריצה הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A^* = \overline{A^\mathrm{T}} = \overline{A}^\mathrm{T}} (בכתיב לפי רכיבים: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A^*_{ij} = \overline{(A_{ji})}} ). כלומר, המטריצה הצמודה מתקבלת משחלוף והפעלת הצמוד המרוכב.

עבור מטריצות ממשיות, אם כך, מטריצה היא הרמיטית אם ורק אם היא סימטרית. מטריצות סימטריות ממשיות הן לכסינות אורתוגונלית אפילו מעל הממשיים.

דוגמאות

  1. אופרטור הזהות הוא אופרטור הרמיטי.
  2. בפרט, לכל טבעי, מטריצת היחידה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle I_n} היא מטריצה הרמיטית מעל ו-.
  3. יהי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{H} = \mathbb{R}^2} , אזי כל מטריצה סימטרית היא אופרטור הרמיטי. שכן,
    הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \mathbf{x} , A \mathbf{y} \rangle = \left[ x_1 \ x_2 \right] A \left[ \begin{matrix} y_1 \\ y_2 \end{matrix} \right] = \left( A^t \left[ \begin{matrix} x_1 \\ x_2 \end{matrix} \right] \right)^t \left[ \begin{matrix} y_1 \\ y_2 \end{matrix} \right] = \langle A^t \mathbf{x} , \mathbf{y} \rangle = \langle A \mathbf{x} , \mathbf{y} \rangle } .
  4. מעל הצמוד ההרמיטי של הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A^* = \overline{A}^t = \overline{A^t} = \left[ \begin{matrix} \bar{a}_{11} & \bar{a}_{21} \\ \bar{a}_{12} & \bar{a}_{22} \end{matrix} \right]} .
  5. מעל מטריצות פאולי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_x = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \sigma_y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \quad \sigma_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} } הן מטריצות הרמיטיות.
  6. יהי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{H} = C^{2}(I) \cap L^2(I)} מרחב הפונקציות הממשיות הגזירות פעמיים ברציפות ואינטגרביליות לבג בריבוע שמתאפסות בקצות הקטע הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle I \subset \mathbb{R}} , עם מכפלה פנימית הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle f , g \rangle = \int_{I} f(x)g(x) \, \mathrm{d}x} , אזי האופרטור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\mathrm{d}^2}{\mathrm{d} x^2}} (גזירה פעמיים) הוא אופרטור צמוד לעצמו שכן,
    הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\langle \frac{\mathrm{d}^2 f}{\mathrm{d}x^2} , g \right\rangle = \int_{I} \left( \frac{\mathrm{d}^2 f}{\mathrm{d}x^2} \right) g(x) \,\mathrm{d}x = - \int_{I} \left( \frac{\mathrm{d} f}{\mathrm{d}x} \right) \left( \frac{\mathrm{d} g}{\mathrm{d}x} \right) \mathrm{d}x = \int_{I} f(x) \frac{\mathrm{d}^2 g}{\mathrm{d}x^2} \,\mathrm{d}x = \left\langle f , \frac{\mathrm{d}^2 g}{\mathrm{d}x^2} \right\rangle } (השתמשנו פעמיים באינטגרציה בחלקים).

ראו גם


הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0

29439439אופרטור הרמיטי