שחלוף (מתמטיקה)
באלגברה לינארית, שחלוף (לפעמים גם חילוף; אנגלית: Transpose) הוא פעולת ההחלפה בין השורות והעמודות של מטריצה נתונה. הפעולה מקבלת מטריצה בת n שורות ו-m עמודות, ומחזירה מטריצה בת m שורות ו-n עמודות, שבמקום ה-(i,j) שלה נמצא האיבר ה-(j,i) של המטריצה המקורית. השחלוף הוא דוגמה סטנדרטית לאינוולוציה מסוג ראשון. מטריצה ריבועית שפעולת השחלוף אינה משנה אותה נקראת מטריצה סימטרית.
הגדרה פורמלית
תהא מטריצה מסדר . המטריצה המשוחלפת שלה, (מקובלים גם הסימונים ) היא מטריצה מסדר שמוגדרת כך: , עבור כל .
דוגמאות:
תכונות
פעולת השחלוף מהווה, כאמור, אינוולוציה מסוג ראשון. פירושו של דבר הוא שהפעולה שומרת על החיבור ועל הכפל בסקלר, הופכת את פעולת הכפל, ויש לה סדר 2:
- .
- .
מן התכונות האלה נובע גם שאם הפיכה אז גם הפיכה ו-.
הדטרמיננטה של מטריצה זהה לזו של המטריצה המשוחלפת שלה. מכאן נובע שגם הפולינום האופייני של שווה לזה של , ולכן יש להן גם אותם ערכים עצמיים. יתרה מזו, כל מטריצה דומה למטריצה המשוחלפת שלה.
מטריצות מיוחדות הקשורות בשחלוף
מטריצה ריבועית נקראת סימטרית אם , כלומר שווה למטריצה המשוחלפת שלה. נקראת אנטי-סימטרית אם .
אם היא מטריצה ריבועית הפיכה ומתקיים , אז נקראת מטריצה אורתוגונלית. כלומר, מטריצה ריבועית היא אורתוגונלית אם ורק אם , כאשר היא מטריצת היחידה.
בדומה לפעולת השחלוף אפשר להגדיר גם פעולת הצמדה הרמיטית הכוללת בנוסף לשחלוף גם פעולת הצמדה של אברי השדה. הצמוד ההרמיטי של מטריצה מסומן וכאמור מוגדר לפי . אם מקיימת , היא נקראת מטריצה הרמיטית. מטריצה הרמיטית היא סימטרית בדיוק כאשר כל הרכיבים שלה ממשיים. בעניין זה, ראו גם אופרטור הרמיטי.
שחלוף של העתקה לינארית
- ערך מורחב – מרחב דואלי#שחלוף של העתקה לינארית
אם ו- הם מרחבים וקטוריים מעל שדה ו- היא העתקה לינארית, ההעתקה המשוחלפת שלה היא העתקה בין המרחבים הדואליים של ו- המוגדרת באופן הבא:
לכל ולכל .
זוהי העתקה לינארית ודרגתה שווה לדרגת . הפונקציונל מכונה לעיתים המשיכה לאחור של במקביל ל-.
אם ו- הם מרחבים וקטוריים סוף-ממדיים, הוא בסיס סדור ל- עם בסיס דואלי , הוא בסיס סדור ל- עם בסיס דואלי ו- היא המטריצה המייצגת של ביחס לבסיסים , אז המטריצה המייצגת של ביחס לבסיסים היא בדיוק .
נושאים באלגברה ליניארית | ||
---|---|---|
מושגי יסוד | שדה • מרחב וקטורי • משוואה ליניארית • מערכת משוואות ליניאריות • העתקה ליניארית • מטריצה | |
וקטורים | סקלר • כפל בסקלר • צירוף ליניארי • תלות ליניארית • קבוצה פורשת • בסיס • וקטור קואורדינטות • ממד | |
מטריצות | כפל מטריצות • שחלוף • דטרמיננטה • דירוג מטריצות • דרגה • עקבה • מטריצה מצורפת • מטריצת מעבר • מטריצה משולשית • דמיון מטריצות • ערך עצמי • פולינום אופייני • לכסון מטריצות • צורת ז'ורדן | |
העתקות | העתקה ליניארית • קואורדינטות • מטריצה מייצגת • גרעין • אנדומורפיזם • איזומורפיזם • העתקה אפינית • העתקה פרויקטיבית | |
מרחבי מכפלה פנימית | מכפלה סקלרית • מכפלה וקטורית • אורתוגונליות • מטריצה סימטרית • אופרטור הרמיטי • אופרטור אוניטרי • טרנספורמציה נורמלית • נורמה • מטריקה | |
תבניות | תבנית ביליניארית • תבנית סימטרית • תבנית הרמיטית • תבנית סימפלקטית • חפיפת מטריצות • משפט סילבסטר • תבנית מולטי-ליניארית אנטי-סימטרית • אוריינטציה • צפיפות • טנזור |