אופרטור קומפקטי
באנליזה פונקציונלית (ענף במתמטיקה), אופרטור קומפקטי הוא אופרטור ליניארי L בין מרחבי בנך X ו-Y המעתיק כל תת-קבוצה חסומה ב-X לתת-קבוצה חסומה יחסית (במילים אחרות, שהסגור שלה קומפקטי) ב-Y. אופרטור קומפקטי הוא בהכרח חסום ולכן רציף.
המקור של תורת האופרטורים הקומפקטיים הוא בתורת המשוואות האינטגרליות, שבה אופרטורים אינטגרליים הן דוגמאות קונקרטיות של אופרטורים קומפקטיים. משוואת פרידהולם טיפוסית משרה אופרטור קומפקטי K של מרחבי פונקציות. תכונת הקומפקטיות מתקבלת מרציפות במידה שווה. שיטת הקירוב על ידי אופרטורים בעלי דרגה סופית היא הבסיס של פתרון נומרי של משוואות כאלה. הרעיון המופשט של אופרטור פרידהולם נגזר מקשר זה.
כל אופרטור ליניארי עם דרגה סופית הוא קומפקטי.
אופרטור ליניארי הוא קומפקטי אם ורק אם התמונה של כל סדרה חסומה מכילה תת-סדרה מתכנסת.
קישורים חיצוניים
- אופרטור קומפקטי, באתר MathWorld (באנגלית) המזהה לא מולא ולא נמצא בוויקינתונים, נא למלא את הפרמטר.
אופרטור קומפקטי28324134Q1780743