מטריצות פאולי

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

מטריצות פאולי הן שלוש מטריצות מרוכבות המסייעות לייצג טרנספורמציות סיבוב במרחב מממד זוגי של פונקציות מרוכבות. למטריצות אלו חשיבות רבה בפיזיקה בכלל, ובתורת הקוונטים בפרט. בין היתר ניתן לייצג בעזרתן את אופרטור הספין, אופרטור הבורגיות (Helicity) ובעזרתן ניתן לכתוב את משוואת דיראק במרחב הספינור ה-4 ממדי. מטריצות אלו קרויות על שם הפיזיקאי האוסטרי וולפגנג פאולי.

המטריצות הן מסדר , כדלהלן:

לדוגמה, אופרטור הספין במרחב המצבים העצמיים של ספין 12 ניתן לכתיבה בצורה

תכונות מטריצות פאולי

  • מעל מטריצות פאולי ומטריצת היחידה מהוות יחד בסיס למרחב המטריצות המרוכבות ההרמיטיות .
  • מעל מטריצות פאולי ומטריצת היחידה מהוות יחד בסיס למרחב כל המטריצות המרוכבות .
  • לכל אחת ממטריצות פאולי שני ערכים עצמיים: (1+) ו־(1-).
  • כל אחת ממטריצות פאולי מקיימת את השוויון : כאשר היא מטריצת היחידה.
  • כפל מטריצות:
אם אז
  • יחסי חילוף (קומוטציה) ואנטי-חילוף (אנטי-קומוטציה):
  • את הזהויות לעיל אפשר לסכם כך:
.
כאשר הוא הדלתא של קרונקר ו הוא סימן לוי-צ'יוויטה.
  • עבור וקטורים (של מספרים) מתקיים:

שימושים בפיזיקה

למטריצות פאולי מספר שימושים בתורת הקוונטים, ביניהם:

  • עבור ספין 12, האופרטור המתאים לספין בכיוון הציר הוא . בפרט מטריצות פאולי עצמן מתאימות לספין בכיוון הצירים x,y,z. האופרטור המתאר סיבוב של ספין 12 בזווית סביב הציר הוא:
  • מטריצות פאולי משמשות לבניית מטריצות גאמה של דיראק, הנמצאות בניסוח היחסותי האינווריאנטי-לורנץ של משוואת דיראק.
  • בפיזיקה גרעינית משתמשים במטריצות פאולי לתיאור טרנספורמציות של חלקיקים בעלי איזוספין 12 (לדוגמה נוקליאונים). בתחום זה, מטריצות פאולי מסומנות בדרך כלל ב־.
  • מטריצות פאולי הן היוצרות של ההצגה מממד 2 של חבורת לי .

שימושים בחישוב קוונטי

בחישוב קוונטי, השערים הלוגים מיוצגים על ידי מטריצות אוניטריות בגודל 2x2, ומטריצות פאולי מייצגות כמה מהשערים החשובים ביותר.

שם השמות שלהם הם:

ראו גם

קישורים חיצוניים

הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0

34559530מטריצות פאולי