פורטל:מתמטיקה
המתמטיקה מוגדרת לעתים קרובות כלמידת הדפוסים והתבניות של מבנה, שינוי ומרחב, ואפיונם. מנקודת מבט מודרנית, מתמטיקה היא השימוש בלוגיקה פורמלית לחקירת מערכות ומבנים מופשטים שהוגדרו אקסיומטית.
מוצאם של רוב המבנים הנחקרים במתמטיקה הוא ממדעי הטבע, לרוב מפיזיקה, אך מתמטיקאים מרבים להגדיר ולחקור מבנים מסיבות פנימיות לחלוטין למתמטיקה עצמה, למשל לשם ביצוע הכללה מאחדת של תחומים מתמטיים אחדים או ככלי שימושי לביצוע חישובים. יש אפוא מתמטיקאים רבים שחוקרים תחומים מסוימים מסיבות אסתטיות לחלוטין, בראיית המתמטיקה כאמנות במידת מה יותר מכמדע שימושי.
עריכהערכים מומלצים במתמטיקה
עריכהמאמר נבחר
הפילוסופיה של המתמטיקה היא ענף של הפילוסופיה העוסק בהנחות היסוד של המתמטיקה ובמשמעותה של המתמטיקה. הפילוסופיה של המתמטיקה מנסה לתת תשובות לשאלות כגון:
|
עריכהמומלצי פורטל נוספים
עריכהמתמטיקאי נבחר
בְּלֶז פסקל (צרפתית: Blaise Pascal) (19 ביוני 1623 - 19 באוגוסט 1662), מתמטיקאי, פיזיקאי ופילוסוף צרפתי. איש מדע רב-תחומי, שפעולותיו חבקו תחומים רבים ומגוונים. בהיותו בן 16 הציג פסקל את עבודתו המתמטית הראשונה, שעסקה בגאומטריה פרויקטיבית. כעבור זמן קצר פרסם פסקל את עבודתו על חתכי חרוט. משנת 1642 טרח במשך שלוש שנים על המצאת מכונת חישוב מכנית - פסקלין, מעין מחשבון שביצע רק פעולות חיבור וחיסור. הוא המציא זאת כדי לעזור לאביו בעבודתו כגובה מס. מכונת חישוב זאת פעלה על עקרון גלגלי שיניים והיוותה בסיס למכונות חישוב מכניות מסוג זה שפעלו עד שבאו לעולם מכונות החישוב האלקטרוניות. פסקל עסק במתמטיקה ועל שמו קרוי משולש פסקל המשמש להצגת מקדמי הבינום, כמו כן תרם גם לתורת המספרים. בפיזיקה עסק בחקר הנוזלים (הידרודינמיקה והידרוסטטיקה). על שמו קרויות יחידת המידה ללחץ פסקל, ושפת התכנות פסקל. |
עריכהתמונה נבחרת
פונקציית ויירשטראס היא הדוגמה הראשונה שפורסמה לפונקציה רציפה בכל נקודה על הישר הממשי אך לא גזירה באף נקודה.
|
עריכהאנימציה נבחרת
|
המתמטיקאי והלוגיקאי קורט גדל היה בפירוש פלאוטוניסט בהשקפתו המתמטית. גדל התפרסם בעיקר בזכות משפטי האי שלמות שלו, שהשפיע השפעה מכרעת על הלוגיקה המתמטית בפרט ועל המתמטיקה בכלל, שמראים כי יש טענות מתמטיות שלא ניתן להוכיחן או להפריכן ושאי אפשר להוכיח את עקביותה של מערכת המכילה את אקסיומות פאנו, כלומר האקסיומות האריתמטיות הבסיסיות. גדל ראה את הוכחתו כמכת מחץ לפורמליזם וכצידוק לגישתו הפלאוטוניסטית, אך באופן אירוני הוכחתו תרמה רבות לפיתוח הפוסטמודרניזם, בניגוד מוחלט להשקפותיו.
מתמטיקאים הם בני אדם, אלא שהם מסתירים זאת היטב.
— עמוס נוי
נוסחאות למציאת פתרונות למשוואות פולינומיאליות ממעלות 1 עד 4. השורשים ממעלה שלישית הם אלגבריים, זאת אומרת שניתן להציב במקומם כל אחד משלושת השורשים המרוכבים. עם זאת בשתי הנוסחאות האחרונות, לא כל הצבה כזאת (כמו גם בחירה של הסימן ) תיתן שורש, אבל כל שורש אפשר לקבל כהצבה. הנוסחה האחרונה לא תקפה כשהמכנים מתאפסים, יש נוסחאות שונות למקרים אלה. שתי הנוסחאות האחרונות נחשבות לאחד ההישגים המשמעותיים של המתמטקה של הרנסאנס. בגלל החזרות הרבות, אפשר לפשט משמעותית את שתי הנוסחאות הארחונות אם מכניסים סימוני עזר בשביל חלקים של הנוסחה שחוזרים על עצמם. לפי תורת גלואה, לא ניתן לפתח נוסחאות המבוססות על ארבע פעולות החשבון ושורשים עבור משוואות ממעלה גבוהה יותר.
איך אפשר לחשב את המכפלה של שני מספרים, במחשבון שבו אפשר לבצע רק חיבור, חיסור והיפוך (היינו, הפעולה )?
פתרון | |
---|---|
|
בונוס:נסו להשתמש ב6 פעולות היפוך בלבד
עריכהאוצרות הרשת
בחלון זה מופיעה תצוגה מתחלפת של אתרי אינטרנט הפועלים להנגשת המתמטיקה לציבור הרחב. אתר היום: MAA Online (באנגלית) האתר של MAA - האגודה המתמטית של ארצות הברית, ובו שלל טורים מעניינים, כולל כאלה שאינם מצריכים בקיאות במתמטיקה. |
עריכהמדף הספרים
בחלון זה מופיעה תצוגה מתחלפת של ספרי מתמטיקה שנועדו להנגשת המתמטיקה לציבור הרחב. ספר היום: דאגלס הופשטטר, גדל, אשר, באך, דביר, 2011 גדל, אשר, באך, או בשמו המלא "גדל, אשר, באך: גביש בן אלמוות: פוגה מטאפורית על נפשות ומכונות ברוח לואיס קרול" הוא ספר עיון העוסק בשאלות מתמטיות ופילוסופיות, אך גם בנושאים רבים הנוגעים לאמנות, לוגיקה, מוזיקה ומדעי המחשב. הספר יצא לאור באנגלית ב-1979 ותורגם לעברית ב-2011. |
משפטים מפורסמים
|
השערות מפורסמות
|
השערת קולץ היא בעיה בתורת המספרים, הקשורה בהתייצבות של התהליך המספרי הבא:
מגדירים כלל, באופן הבא: מספרים זוגיים יש לחלק בשתיים, בעוד שמספרים אי-זוגיים יש להכפיל בשלוש ולהוסיף לתוצאה אחת. ההשערה היא שהפעלה חוזרת של כלל זה תביא בסופו של דבר למספר 1, ואין זה משנה מהי נקודת ההתחלה. לדוגמה, הפעלת התהליך על המספר 11 מביאה ל-34, משם ל-17, ואחר-כך, לפי הסדר, . בדוגמה זו, כמו במקרים רבים אחרים, מתקבלים מספרים גדולים יחסית, אך בסופו של דבר הירידות מתגברות על העליות, והתוצאה מגיעה ל-1.
השערה זו זכתה לפופולריות רבה, בעיקר משום שקל מאד לתכנת ולבדוק אותה בעזרת מחשב. ההשערה נבדקה עבור מספרים עד ל-27 מיליון מיליארדים, אבל לא ידועה לה עדיין כל הוכחה. פול ארדש אמר על השערה זו כי "המתמטיקה עדיין לא מוכנה לבעיות כאלה", ואף הציע, כדרכו, פרס כספי בן 500 דולר למי שימצא לה הוכחה.
נושאים במתמטיקה
| ||
---|---|---|
כמות | אינסוף - מספרים (טבעיים, שלמים, רציונליים, אי-רציונליים, ממשיים, מרוכבים) - מספרים סודרים - עוצמה - תורת המידה - קבועים מתמטיים | |
שינוי | אנליזה מתמטית - אנליזה וקטורית - אנליזה מרוכבת - אריתמטיקה - חשבון אינפיניטסימלי - תורת הכאוס - משוואות דיפרנציאליות - אנליזה פונקציונלית | |
מבנה | אלגברה - אנליזה מתמטית - אריתמטיקה - טופולוגיה - תורת הגרפים - תורת החבורות - תורת המספרים | |
מרחב | אלגברה ליניארית - גאומטריה - טופולוגיה - טריגונומטריה - אנליזה וקטורית - חשבון טנזורים - מרחב מחויג | |
מתמטיקה בדידה | חישוביות - קומבינטוריקה - קריפטוגרפיה - תורת הגרפים - תורת המשחקים | |
יסודות ושיטות | לוגיקה - פילוסופיה של המתמטיקה - תורת הקבוצות - סימון מתמטי - תורת הקטגוריות | |
מתמטיקה יישומית | אופטימיזציה - אנליזה נומרית - הסתברות - סטטיסטיקה - מתמטיקה פיננסית | |
עולם המתמטיקה | הוראת המתמטיקה - האיחוד המתמטי הבינלאומי - היסטוריה של המתמטיקה - מדליית פילדס - מתמטיקאים - 23 הבעיות של הילברט |
ערכים המחפשים עורכים |
דיונים, ייעוץ ועזרה
|