פורטל:מתמטיקה

המתמטיקה מוגדרת לעתים קרובות כלמידת הדפוסים והתבניות של מבנה, שינוי ומרחב, ואפיונם. מנקודת מבט מודרנית, מתמטיקה היא השימוש בלוגיקה פורמלית לחקירת מערכות ומבנים מופשטים שהוגדרו אקסיומטית.
מוצאם של רוב המבנים הנחקרים במתמטיקה הוא ממדעי הטבע, לרוב מפיזיקה, אך מתמטיקאים מרבים להגדיר ולחקור מבנים מסיבות פנימיות לחלוטין למתמטיקה עצמה, למשל לשם ביצוע הכללה מאחדת של תחומים מתמטיים אחדים או ככלי שימושי לביצוע חישובים. יש אפוא מתמטיקאים רבים שחוקרים תחומים מסוימים מסיבות אסתטיות לחלוטין, בראיית המתמטיקה כאמנות במידת מה יותר מכמדע שימושי.
עריכהערכים מומלצים במתמטיקה
עריכהמאמר נבחר
![]() ארבע פעולות החשבון הן פעולות החשבון הבסיסיות ביותר, השימושיות בחיי היומיום של מרבית בני האדם. פעולות אלה נלמדות בתחילת לימודי המתמטיקה בבית הספר היסודי, וחרף פשטותן היחסית, נדרשת לביצוען מידה מסוימת של הפשטה. ארבע פעולות החשבון הן חיבור, חיסור, כפל וחילוק. כל אחת מפעולות אלה היא פעולה בינארית, כלומר פונקציה הפועלת על שני מספרים, אך ניתן לכתוב ביטויים הכוללים מספרים רבים ופעולות רבות. במקרה זה נחוצים כללים לקביעת סדר ביצוע הפעולות (פעולה קרויה גם אופרטור, ומספרים שעליהם היא פועלת קרויים אופרנדים). הכלל הראשון קובע שפעולות כפל וחילוק קודמות לפעולות חיבור וחיסור. כדי לבצע את הפעולות בסדר שונה מהאמור בכלל זה יש להשתמש בסוגריים. לאחר שני כללים אלה, הפעולות מתבצעות משמאל לימין. באלגברה מופשטת מעוניינים לחקור את תכונותיהן של פעולות שמוגדרות על קבוצות כלשהן, לא בהכרח של מספרים, אך שמזכירות את פעולות החשבון על המספרים. |
עריכהמומלצי פורטל נוספים
עריכהמתמטיקאי נבחר
![]() קורט גדל (בגרמנית: Kurt Gödel) (28 באפריל 1906 - 14 בינואר 1978) היה לוגיקן אוסטרי (ואחר-כך אמריקני) מגדולי הלוגיקנים של כל הזמנים. גדל נולד ב-28 באפריל 1906 בעיר ברנו שבאימפריה האוסטרו-הונגרית (כיום בצ'כיה), לאב שהיה מנהל מפעל טקסטיל. בגיל 18 התחיל גדל את לימודיו באוניברסיטת וינה, שם לקח קורסים בפיזיקה, במתמטיקה ובפילוסופיה, כשבסופו של דבר התמקד בלוגיקה מתמטית והיה חבר בחוג הווינאי. בשנת 1930 סיים את עבודת הדוקטורט שלו, שבה הוכיח את שלמותו של תחשיב פסוקים מסדר ראשון. טענה זו ידועה בשם משפט השלמות של גדל. מראשית ימי המתמטיקה ועד למאה העשרים פעלו המתמטיקאים מתוך תחושה שכל טענה מתמטית ניתנת להוכחה או, לחלופין, להפרכה (כלומר להוכיח שאינה נכונה). בשנת 1931 הוכיח גדל, במאמרו "על טענות שאינן ניתנות להוכחה בפרינציפיה מתמטיקה ובמערכות דומות", שלתחושה זו אין כל בסיס, וברבות מהמערכות האקסיומטיות, ובפרט אלו שמנסות למדל את האריתמטיקה, קיימות טענות שלא ניתן להוכיח או להפריך. הוכחה זו זכתה לשם משפטי האי שלמות של גדל, משפט שהוא אבן הפינה של הלוגיקה המתמטית המודרנית וזיכה את גדל בכינוי "מקלקל האריתמטיקה". |
עריכהתמונה נבחרת
|
עריכהאנימציה נבחרת
![]()
עקומה שמתארת את מסלולה של נקודה קבועה על גבי מעגל המתגלגל ללא החלקה על גבי קו ישר. זה המסלול שפותר את בעיית הברכיסטוכרון, בעיית "הזמן הקצר ביותר".
|
אם מכונית עוברת מרחק של 100 קילומטר בשעתיים, בהכרח היה רגע במהלך הנסיעה שבו מהירותה הייתה בדיוק 50 קמ"ש. תוצאה זו מובטחת על ידי משפט הערך הממוצע של לגראנז' הקובע כי עבור פונקציה רציפה וגזירה בתחום מסוים, קיימת בהכרח נקודה בה קצב ההשתנות הממוצע של הפונקציה (במקרה הזה העתק לפי זמן או "מהירות ממוצעת") שווה לקצב ההשתנות הרגעי של הפונקציה (המהירות הנקודתית).
מתמטיקאים הם בני אדם, אלא שהם מסתירים זאת היטב.
— עמוס נוי
$ {\displaystyle (a+b)(a-b)=a^{2}-b^{2}} $ נוסחה להפרש של שני ריבועים. נוסחה בסיסית באלגברה. כמו יתר הנוסחאות באלגברה בסיסית, פיתוח הנוסחה פשוט מאוד ומבוסס על חוק הפילוג, חוק הקיבוץ וחוק החילוף. אולם שימוש בנוסחה "לכיוון השני" מימין לשמאל מאפשר לבצע מניפולציות לא טריוויאליות משום שהוא מחליף ביטוי שעל פניו לא נראה פריק, במכפלה של שני ביטויים פשוטים יותר. על נוסחה זו מבוסס טריק שנקרא מכפלה בצמוד
במשחק נים ישנן ערמות גפרורים אחדות. כל שחקן בתורו יכול לקחת כמה גפרורים שהוא רוצה אבל רק מערמה אחת. מי שלוקח את הגפרור האחרון מנצח. עבור מצב התחלתי שבו יש שלוש ערמות שבהן 5 ,6 ,9 גפרורים, האם כדאי להיות השחקן הפותח, או לתת ליריב לשחק קודם? מה אסטרטגיית הניצחון במשחק?
למי שמכיר את החידה, או פתר אותה והתלהב, ישנה גם חידת בונוס.
פתרון | |
---|---|
|
עריכהאוצרות הרשת
![]() בחלון זה מופיעה תצוגה מתחלפת של אתרי אינטרנט הפועלים להנגשת המתמטיקה לציבור הרחב. אתר היום: לא מדויק לא מדויק הוא הבלוג של ד"ר גדי אלכסנדרוביץ', שבו עוסק המחבר בקשת רחבה של נושאים, מכל תחומי המתמטיקה ומדעי המחשב. העיסוק הוא מנקודת מבט מתקדמת, אך נעשה מאמץ להנגשתם לציבור רחב ככל האפשר של קוראים. |
עריכהמדף הספרים
בחלון זה מופיעה תצוגה מתחלפת של ספרי מתמטיקה שנועדו להנגשת המתמטיקה לציבור הרחב. ספר היום: ![]() ריימונד סמוליאן, מה שמו של ספר זה? - תעלומת דרקולה וחידות היגיון אחרות, תרגם מאנגלית: עידו אמין, כנרת בית הוצאה לאור, 2006 ריימונד סמוליאן הוא מתמטיקאי, לוגיקן ופילוסוף אמריקאי, שצבר מוניטין גם כמחברם של ספרי חידות, שלפתרונן נדרש שימוש בלוגיקה. באחרית דבר לספר עמד מאיר גולדברג על ייחודו של סמוליאן:
|
משפטים מפורסמים
|
השערות מפורסמות
|
משפט בולצאנו-ויירשטראס באנליזה מתמטית קובע כי לכל סדרה אינסופית חסומה של נקודות ב-$ \mathbb {R} ^{n} $ קיימת תת-סדרה מתכנסת. ניסוח אחר (ושקול) של המשפט קובע כי לכל קבוצה אינסופית חסומה של נקודות ב-$ \mathbb {R} ^{n} $ קיימת נקודת הצטברות.
הרעיון האינטואיטיבי שעומד מאחורי המשפט הוא שאם קיימת קבוצה שיש בה אינסוף נקודות, והאיברים שלה לא יכולים "לברוח" רחוק מדי, לפחות חלק מהם אמורים להיות קרובים מאד זה לזה. המשפט מראה בצורה קונסרקטיבית כיצד ניתן למצוא את הסדרה או נקודת ההצטברות המבוקשות, אך זו אינה דרך מעשית, מאחר שהיא מבוססת על תהליך אינסופי של חלוקת הקטע החסום לחלקים קטנים והולכים.
נושאים במתמטיקה
| ||
---|---|---|
כמות | אינסוף - מספרים (טבעיים, שלמים, רציונליים, אי-רציונליים, ממשיים, מרוכבים) - מספרים סודרים - עוצמה - תורת המידה - קבועים מתמטיים | |
שינוי | אנליזה מתמטית - אנליזה וקטורית - אנליזה מרוכבת - אריתמטיקה - חשבון אינפיניטסימלי - תורת הכאוס - משוואות דיפרנציאליות - אנליזה פונקציונלית | |
מבנה | אלגברה - אנליזה מתמטית - אריתמטיקה - טופולוגיה - תורת הגרפים - תורת החבורות - תורת המספרים | |
מרחב | אלגברה ליניארית - גאומטריה - טופולוגיה - טריגונומטריה - אנליזה וקטורית - חשבון טנזורים - מרחב מחויג | |
מתמטיקה בדידה | חישוביות - קומבינטוריקה - קריפטוגרפיה - תורת הגרפים - תורת המשחקים | |
יסודות ושיטות | לוגיקה - פילוסופיה של המתמטיקה - תורת הקבוצות - סימון מתמטי - תורת הקטגוריות | |
מתמטיקה יישומית | אופטימיזציה - אנליזה נומרית - הסתברות - סטטיסטיקה - מתמטיקה פיננסית | |
עולם המתמטיקה | הוראת המתמטיקה - האיחוד המתמטי הבינלאומי - היסטוריה של המתמטיקה - מדליית פילדס - מתמטיקאים - 23 הבעיות של הילברט |
ערכים המחפשים עורכים ![]() |
דיונים, ייעוץ ועזרה
|