פורטל:מתמטיקה

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

Gnome-colors-view-refresh.svg רענון הפורטל Netvibes.svg כיצד אוכל לעזור?    

P mathematics.svg

המתמטיקה מוגדרת לעתים קרובות כלמידת הדפוסים והתבניות של מבנה, שינוי ומרחב, ואפיונם. מנקודת מבט מודרנית, מתמטיקה היא השימוש בלוגיקה פורמלית לחקירת מערכות ומבנים מופשטים שהוגדרו אקסיומטית.

מוצאם של רוב המבנים הנחקרים במתמטיקה הוא ממדעי הטבע, לרוב מפיזיקה, אך מתמטיקאים מרבים להגדיר ולחקור מבנים מסיבות פנימיות לחלוטין למתמטיקה עצמה, למשל לשם ביצוע הכללה מאחדת של תחומים מתמטיים אחדים או ככלי שימושי לביצוע חישובים. יש אפוא מתמטיקאים רבים שחוקרים תחומים מסוימים מסיבות אסתטיות לחלוטין, בראיית המתמטיקה כאמנות במידת מה יותר מכמדע שימושי.

מערכות המספרים החשובות וקשרי ההכלה ביניהן

במתמטיקה, מערכת מספרים היא קבוצה של מספרים, או עצמים הדומים למספרים, שמוגדרות בה פעולות אריתמטיות כגון חיבור וכפל. המערכות החשובות ביותר הן קבוצת המספרים הטבעיים, חוג המספרים השלמים, שדה המספרים הרציונליים, שדה המספרים הממשיים ושדה המספרים המרוכבים. עם זאת לשאלה 'מהי מערכת מספרים' אין תשובה מדויקת, וקבוצות כלליות יותר עשויות להחשב למערכות מספרים בהקשר המתאים.

סביר להניח שבתחילה רק מספרים טבעיים נחשבו כ'מספרים'. אלו הם מונים של קבוצות סופיות: אחד, שניים, שלושה, ארבעה וכן הלאה. בבית הספר של פיתגורס 'מספר' היה תמיד יחס בין שני מספרים שלמים, כלומר (בשפה המודרנית) מספר רציונלי. מצד שני הפיתגוראים זיהו מספר עם האורך של קטע מתאים, והעדיפו בזה את הגישה הגאומטרית לשאלה 'מהו מספר'. הצורך של הפיתגוראים בהתאמה בין שתי ההגדרות האלה היה חזק כל-כך, עד שלפי האגדה הם זרקו לנהר תלמיד שגילה כי אורך האלכסון של ריבוע שצלעו יחידה אחת (שורש 2 על-פי משפט פיתגורס) אינו מספר רציונלי.
St Louis Gateway Arch.jpg

קשת השער בסנט לואיס שבמיזורי היא מבנה מרשים הבנוי בצורת קוסינוס היפרבולי, הקרויה קו השרשרת. הקשת מסמלת את "שער הכניסה" למערב ארצות הברית ומוקדשת למתיישבים שפרצו את הדרך מערבה במאה ה-19.

איקוסיטטרהדרון

לכמה מסוגי המינרלים יש מבני גביש מורכבים מאוד. כך למשל למינרלים לוסיט, אנלציט ולכמה מסוגי הגארנט יש מבנה בצורת פאון בעל 24 פאות זהות, שצורתן דלתון הקרוי איקוסיטטרהדרון. למינרל קלציט, המרכיב העיקרי בסלעי הגיר ו"האבן" אותה אנו פוגשים בתחתית הקומקום והסותמת את צינורות המים החמים, יש מבנה פשוט של מעוינון, אבל הוא מצוי בטבע גם כסקלנוהדרון, פאון בעל 12 פאות.

Benq joybook transparent.png

בחלון זה מופיעה תצוגה מתחלפת של אתרי אינטרנט הפועלים להנגשת המתמטיקה לציבור הרחב.

אתר היום: Wolfram MathWorld (באנגלית)

למתמטיקה, כמו לכל מדע אחר, אוסף עצום של מושגים ורעיונות. מה לעשות כאשר נתקלים במושג לא מוכר? האם אפשר להמשיך בסדר היום הרגיל בלי לדעת מהו מרחב וקטורי? כל מה שרציתם לדעת על מושגי המתמטיקה, והרבה מעבר למה שחלמתם לשאול, באנציקלופדיה MathWorld, שבה כ-13,000 ערכים.

Kapitolinischer Pythagoras adjusted.jpg

פיתגורסיוונית: Πυθαγόρας), פילוסוף ומתמטיקאי יווני, חי כמשוער בין השנים 496-582 לפני הספירה.

מייסד האסכולה הפיתגוראית, שהייתה קהילה דתית-פילוסופית שהאמינה שאפשר לתאר את כל העולם ביחסים מתמטיים בין מספרים טבעיים, ודגלה באורח-חיים של פשטות המוקדש לעיון והתבוננות, ובצמחונות. בני אסכולה זו נמנים עם הפילוסופים הקדם-אליאטים.

פיתגורס גילה שקיים יחס מספרי בין אורכי המיתרים ובין הצלילים המפיקים מהם, ושניתן לתרגם את תנועת הכוכבים לנוסחה מתמטית. מכאן הסיק שניתן לתרגם כל דבר למספרים ושכל דבר הוא התגלמות של מספר או נוסחה מספרית. פיתגורס ייחס חשיבות רבה ללימודי הגאומטריה, אך המסורת היוונית ייחסה את ראשיתה דווקא לתאלס. רק במסורת הרומית, המאוחרת יותר, זכה פיתגורס למעמד של ממציא המתמטיקה ומחבר לוח הכפל. כיום זכור בעיקר על-פי משפט פיתגורס, הנקרא על שמו.

מתמטיקאים הם בני אדם, אלא שהם מסתירים זאת היטב.

בחלון זה מופיעה תצוגה מתחלפת של ספרי מתמטיקה שנועדו להנגשת המתמטיקה לציבור הרחב.

ספר היום:

Falk - etgarim.jpg

רומה פלק, אתגרים לתאים האפורים - בעיות, חידות ולקחיהן, ספרית פועלים - הוצאת הקיבוץ המאוחד, 2004

הספר מכיל 122 חידות מתמטיות, מהן נודעות ומהן מקוריות. לכל חידה אתגר משלה, ולמי שלא הצליח לפצחו, ניתן פתרון מפורט. המחברת, רומה פלק מהאוניברסיטה העברית בירושלים, מנחה את הקורא:

"איך לקרוא את הספר? לאט לאט ובמינון סביר. אני ממליצה להתייחס לספר זה כמו לשתיית קפה: לא יותר מדי בבת אחת ולא לפני השינה. מומלץ לחשוב לבד על כל בעיה לפני שמציצים בפתרונה. הפתרון יהיה הרבה יותר משמעותי בעבורכם אם הגעתם אליו (או לפתרון אחר) בכוחות עצמכם, או אף אם עשיתם חלק מהדרך ועמדתם על סוד הקושי והסיבוך של הבעיה."
Tower of Hanoi.jpeg

במשחק מגדלי האנוי נקרא לסידור של הדיסקיות 'מצב חוקי' אם אף דיסקית אינה מונחת מעל דיסקית קטנה ממנה. עבור מגדל עם n דיסקיות, כמה מצבים חוקיים ישנם? האם ניתן מהמצב ההתחלתי הנראה בציור, להגיע לכל מצב חוקי?


משפטים מפורסמים
השערות מפורסמות
מבט אל הלוח – משפט או השערה מפורסמים

המשפט האחרון של פרמה הוא משפט מפורסם בתורת המספרים שאותו ניסח המתמטיקאי פייר דה פרמה באמצע המאה ה-17, והוא נותר כבעיה פתוחה עד שהוכח על ידי אנדרו ויילס בשנת 1995. במשך כ-350 שנים היה לאחת הטענות המפורסמות ביותר בעולם המתמטיקה שלא הוכחו.

המשפט טוען כי:

עבור n טבעי גדול מ-2, לא קיימים מספרים טבעיים x,y,z המקיימים את המשוואה: .
נושאים במתמטיקה
כמות אינסוף - מספרים (טבעיים, שלמים, רציונליים, אי-רציונליים, ממשיים, מרוכבים) - מספרים סודרים - עוצמה - תורת המידה - קבועים מתמטיים
שינוי אנליזה מתמטית - אנליזה וקטורית - אנליזה מרוכבת - אריתמטיקה - חשבון אינפיניטסימלי - תורת הכאוס - משוואות דיפרנציאליות - אנליזה פונקציונלית
מבנה אלגברה - אנליזה מתמטית - אריתמטיקה - טופולוגיה - תורת הגרפים - תורת החבורות - תורת המספרים
מרחב אלגברה לינארית - גאומטריה - טופולוגיה - טריגונומטריה - אנליזה וקטורית - חשבון טנזורים - מרחב מחויג
מתמטיקה בדידה חישוביות - קומבינטוריקה - קריפטוגרפיה - תורת הגרפים - תורת המשחקים
יסודות ושיטות לוגיקה - פילוסופיה של המתמטיקה - תורת הקבוצות - סימון מתמטי - תורת הקטגוריות
מתמטיקה יישומית אופטימיזציה - אנליזה נומרית - הסתברות - סטטיסטיקה - מתמטיקה פיננסית
עולם המתמטיקה הוראת המתמטיקה - האיחוד המתמטי הבינלאומי - היסטוריה של המתמטיקה - מדליית פילדס - מתמטיקאים - 23 הבעיות של הילברט

גאומטריה היא ענף של המתמטיקה העוסק בצורות ובמבנים, ובהם הישויות: נקודות, קווים ישרים, עקומות, משטחים ופאונים.

על פי רוב עוסקים בגאומטריה בהוכחת טענות לגבי הישויות בעזרת משפטים, המתבססים על אקסיומות. דוגמה למשפטים גאומטריים מהווים משפטי חפיפה. דוגמאות לאקסיומות מופיעות בערך נקודה.

המבנים היסודיים של הגאומטריה (בדרך כלל, נקודה, קו ישר, מישור, ולעתים גם הזווית והמרחק) מתוארים באמצעות האקסיומות שהם מקיימים. גישה כזו אינה מסתפקת בתיאור שיטות ואבחנות גאומטריות, אלא מתארת במפורש את הנחות היסוד (האקסיומות), וגוזרת מהן בדרך של הוכחה את המשפטים המתייחסים לאותם מבנים.

P computing.svg P At sign.png P physics-2.png P chemistry.svg P Economy.png P Computer-science.png
מחשבים אינטרנט פיזיקה כימיה כלכלה מדעי המחשב

ערכים המחפשים עורכים

Exquisite-kwrite.png

דיונים, ייעוץ ועזרה


מהו פורטל? - רשימת כל קטגוריות המשנה והערכים