ד'אלמברטיאן
במתמטיקה ופיזיקה, בעיקר בתחומים תורת היחסות הפרטית, אלקטרומגנטיות ותורת הגלים, אופרטור ד'אלמבר או ד'אלמברטיאן, המסומל באמצעות הפענוח נכשל (שגיאת המרה. השרת ("https://wikimedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle \scriptstyle \Box } ("בוקס") ונקרא על שם ז'אן לה רון ד'אלמבר, הוא הרחבה של הלפלסיאן למרחב מינקובסקי ה-4 ממדי.
בקואורדינטות קרטזיות הוא מוגדר על ידי:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \Box & = \partial_\mu \partial^\mu = g_{\mu\nu} \partial^\nu \partial^\mu = \frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial y^2} - \frac{\partial^2}{\partial z^2} = \frac{1}{c^2}{\partial^2 \over \partial t^2} - \nabla^2 \end{align} }
כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle g_{\mu\nu} = \begin{pmatrix}1&0&0&0\\0&-1&0&0\\0&0&-1&0\\0&0&0&-1\end{pmatrix}} היא מטריקת מינקובסקי ו-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nabla^2} הוא הלפלסיאן והמכפלה מחושבת על פי הסכם הסכימה של איינשטיין.
שימושים
- משוואת קליין-גורדון נכתבת באמצעות הד'אלמברטיאן:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\Box + m^2) \psi = 0. \, }
- כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi\,} היא פונקציית הגל של חלקיק יחסותי חופשי חסר ספין ו-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle m\,} היא מסת החלקיק.
- משוואת הגלים האלקטרומגנטיים בריק נכתבת באמצעות הד'אלמברטיאן:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Box A^{\mu} = 0 }
- כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A^{\mu} =( \phi, \vec A ) } הוא ה-4-וקטור של הפוטנציאל האלקטרומגנטי היחסותי של השדה האלקטרומגנטי.
- משוואת הגלים לתנודות קטנות יכולה להכתב באמצעות הד'אלמברטיאן:
- הפענוח נכשל (שגיאת המרה. השרת ("https://wikimedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle \Box _{c}u\left(x,t\right)\equiv u_{tt}-c^{2}u_{xx}=0\,}
- כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle u\left(x,t\right)\,} זו התזוזה מנקודת שיווי המשקל.
- פונקציית גרין הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle G(x-x')\,} עבור הד'אלמברטיאן מקיימת:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Box G(x-x') = \delta(x-x')}
- כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta(x-x')\,} היא פונקציית דלתא של דיראק ו-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\,} ו-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x'\,} הם נקודות במרחב מינקובסקי. פתרון המשוואה נותן את פונקציית גרין:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle G(t,x,y,z) = \frac{1}{2\pi} \Theta(t) \delta(t^2 - x^2 - y^2 - z^2) = \frac{1}{4\pi r} \Theta(t) \delta\left(t - \frac{r}{c}\right)}
- כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,\Theta} היא פונקציית מדרגה.
אנליזה וקטורית | ||
---|---|---|
מושגים | אנליזה מתמטית - מונחים • מרחב וקטורי • שדה סקלרי • שדה וקטורי • גרדיאנט • נגזרת כיוונית • דיברגנץ • רוטור • לפלסיאן • דל במערכות צירים שונות • ד'אלמברטיאן • פוטנציאל וקטורי | |
משפטים | משפט גאוס • משפט גרין • משפט הגרדיאנט • משפט סטוקס | |
אנליזה מתמטית • אנליזה וקטורית • טופולוגיה • אנליזה מרוכבת • אנליזה פונקציונלית • תורת המידה • גאומטריה דיפרנציאלית |
קישורים חיצוניים
- ד'אלמברטיאן, באתר MathWorld (באנגלית) המזהה לא מולא ולא נמצא בוויקינתונים, נא למלא את הפרמטר.
36159036ד'אלמברטיאן