פירוק שור
קפיצה לניווט
קפיצה לחיפוש
משפט הפירוק של שור (על שם המתמטיקאי ישי שור) הוא משפט באלגברה לינארית הקובע כי כל מטריצה ריבועית מעל שדה המספרים המרוכבים דומה אוניטרית למטריצה משולשית עליונה. משפט זה משמש להוכחת משפט הפירוק הספקטרלי בגרסתו המורחבת עבור מטריצות נורמליות.
המשפט
תהי מטריצה ריבועית מעל , אזי קיימות מטריצה משולשית עליונה ומטריצה אוניטרית עבורן
בצורה דומה, לכל אופרטור לינארי מעל מרחב וקטורי מעל בעל ממד , קיימת סדרת תת־מרחבים שמורים .
ראו גם
קישורים חיצוניים
נושאים באלגברה ליניארית | ||
---|---|---|
מושגי יסוד | שדה • מרחב וקטורי • משוואה ליניארית • מערכת משוואות ליניאריות • העתקה ליניארית • מטריצה | |
וקטורים | סקלר • כפל בסקלר • צירוף ליניארי • תלות ליניארית • קבוצה פורשת • בסיס • וקטור קואורדינטות • ממד | |
מטריצות | כפל מטריצות • שחלוף • דטרמיננטה • דירוג מטריצות • דרגה • עקבה • מטריצה מצורפת • מטריצת מעבר • מטריצה משולשית • דמיון מטריצות • ערך עצמי • פולינום אופייני • לכסון מטריצות • צורת ז'ורדן | |
העתקות | העתקה ליניארית • קואורדינטות • מטריצה מייצגת • גרעין • אנדומורפיזם • איזומורפיזם • העתקה אפינית • העתקה פרויקטיבית | |
מרחבי מכפלה פנימית | מכפלה סקלרית • מכפלה וקטורית • אורתוגונליות • מטריצה סימטרית • אופרטור הרמיטי • אופרטור אוניטרי • טרנספורמציה נורמלית • נורמה • מטריקה | |
תבניות | תבנית ביליניארית • תבנית סימטרית • תבנית הרמיטית • תבנית סימפלקטית • חפיפת מטריצות • משפט סילבסטר • תבנית מולטי-ליניארית אנטי-סימטרית • אוריינטציה • צפיפות • טנזור |