פונקציית גמא

מתוך המכלול, האנציקלופדיה היהודית
(הופנה מהדף פונקציית גאמה)
קפיצה לניווט קפיצה לחיפוש

פונקציית גמא היא פונקציה מרוכבת מֶרוֹמורפית, המרחיבה את מושג ה"עצרת" לכל המישור המרוכב: לכל מספר טבעי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ n=1,2,\dots} , הפונקציה מקבלת את הערך .

הפונקציה הוגדרה לראשונה על ידי לאונרד אוילר באמצע המאה ה-18, אך הסימון של הפונקציה באות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \Gamma} נכנס לשימוש בעקבות עבודתו של אדריאן-מארי לז'נדר. קרל פרידריך גאוס הציע גרסה מעט שונה של פונקציית גמא, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \Pi(z) = \Gamma(z+1)} , לה הוא קרא "פונקציית פאי", אלא שהסימון של לז'נדר הועדף בצרפת, ובעקבות זאת גם בשאר העולם.

לפונקציית גמא קטבים (פשוטים) בנקודות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,z=0,-1,-2,\dots} בלבד, ואין לה שורשים. הפונקציה מקיימת את המשוואה הפונקציונלית הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \Gamma(z+1) = z\Gamma(z)} , המסבירה את הקשר לפונקציית העצרת, ועוד זהויות פונקציונליות רבות אחרות.

הגדרה

פונקציית גמא מוגדרת במחצית הימנית של המישור המרוכב על ידי האינטגרל הבא:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma(z) = \int_0^\infty t^{z-1}\,e^{-t}\,dt}

וזאת לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ z \in \mathbb{C}} שהחלק הממשי שלו, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,Re(z)} , הוא חיובי. פונקציה זו מתלכדת עם הפונקציה המוגדרת באמצעות הגבול

המוגדר היטב לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ z \neq 0,-1,-2,\dots} . משום כך, הפונקציה השנייה מהווה המשכה אנליטית של האינטגרל לפונקציה מרומורפית.

תכונות

הקשר לפונקציית עצרת

גרף של פונקציית גמא על הישר הממשי

ניתן להראות שעבור מספרים טבעיים, פונקציית גמא שווה (בהזזת 1) לפונקציית העצרת.

אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,n} הוא חיובי ושלם, אזי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma(n) = \int_0^\infty t^{n-1}\,e^{-t}\,dt=(n-1)! } , כי על ידי ביצוע אינטגרציה בחלקים, אפשר להראות כי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,\Gamma(n+1)=n\Gamma(n)} , ומאחר ש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,\Gamma(1)=1} נקבל כי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,\Gamma(n+1)=n\Gamma(n)=\ldots=n!\Gamma(1)=n!\,} לכל מספר טבעי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,n} .

זהויות אחרות

זהות חשובה אחת לפונקציית גמא היא נוסחת השיקוף: .

מכאן נובע כי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma\left(\frac{1}{2}\right)^2 = {\pi \over \sin \pi/2}=\pi} , ולכן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}} .

זהות חשובה אחרת היא נוסחת הכפל של גאוס:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma(z) \; \Gamma\left(z + \frac{1}{k}\right) \; \Gamma\left(z + \frac{2}{k}\right) \cdots\Gamma\left(z + \frac{k-1}{k}\right) =(2 \pi)^{(k-1)/2} \; k^{1/2 - kz} \; \Gamma(kz) \,\!}
שגיאה ביצירת תמונה ממוזערת:
גרף של הערך המוחלט של פונקציית גמא במישור המרוכב. באיור זה ניתן לראות בבירור את הקטבים של הפונקציה

לפונקציית גמא יש קוטב ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,z=-n} לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,n} טבעי. בנקודה זאת נתון גם ש:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{Res}(\Gamma,-n)=\frac{(-1)^n}{n!}.}

המכפלה האינסופית הבאה, כפי שהראה ויירשטראס, נכונה לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,z} מרוכב, אשר אינו שלם אי-חיובי:

כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,\gamma} הוא "קבוע אוילר".

משפט בוהר-מולרופ

משפט בוהר-מולרופ (על שם המתמטיקאים הדנים הארלד בוהר ויוהאן מולרופ) הוא משפט המאפיין את פונקציית גמא.

משפט: פונקציית גמא הממשית המוגדרת לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x>0} על ידי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma(x)=\int_0^\infty t^{x-1} e^{-t}\,dt} היא הפונקציה היחידה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,f} בקרן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (0,\infty)} המקיימת:

  1. הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,f(1)=1}
  2. הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x+1)=xf(x)\ \mbox{for}\ x>0}
  3. היא פונקציה לוג-קמורה

אחת ההוכחות לנוסחת סטירלינג משתמשת במשפט זה. במסגרת ההוכחה בונים פונקציה המקיימת את שלושת התנאים במשפט בוהר-מולרופ, ולכן פונקציה זו היא בהכרח פונקציית גמא.


ראו גם

קישורים חיצוניים