צורת ז'ורדן

מתוך המכלול, האנציקלופדיה היהודית
(הופנה מהדף מטריצת ז'ורדן)
קפיצה לניווט קפיצה לחיפוש

צורת ז'ורדן של מטריצה ריבועית הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A } היא מטריצה דומה ל-A, שיש לה מבנה של מטריצת בלוקים המורכבת מ"בלוקי ז'ורדן" (ראו להלן). צורת ז'ורדן מכלילה את המטריצות האלכסוניות. יתרונה בכך שמעל שדה סגור אלגברית (כמו שדה המספרים המרוכבים) לכל מטריצה יש צורת ז'ורדן, בעוד שלא כל המטריצות לכסינות. צורת ז'ורדן אמנם כללית יותר מן הצורה האלכסונית, אבל היא נוחה לחישוב כמעט באותה מידה. בדומה לצורה האלכסונית, הערכים באלכסון של צורת ז'ורדן הם הערכים העצמיים של המטריצה.

את התאוריה של צורות ז'ורדן פיתח המתמטיקאי הצרפתי קמי ז'ורדן.

בלוקי ז'ורדן

לכל סקלר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \lambda} ולכל סדר k, בלוק ז'ורדן מסדר k המתאים ל-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \lambda} הוא המטריצה המשולשית הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ J_k(\lambda)} , בגודל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ k \times k} , שרכיבי האלכסון שלה שווים ל-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \lambda} , הרכיבים הסמוכים לאלכסון הראשי מעליו שווים ל-1, וכל שאר רכיבי המטריצה הם 0. לדוגמה: בלוק ז'ורדן מסדר 4 המתאים לערך העצמי 9,

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ J_4(9)=\begin{pmatrix} 9 & 1 & 0 & 0 \\ 0 & 9 & 1 & 0 \\ 0 & 0 & 9 & 1 \\ 0 & 0 & 0 & 9 \end{pmatrix}}

הפולינום המינימלי של בלוק ז'ורדן הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ (x-\lambda)^k} , וכל מטריצה (מסדר k) שזה הפולינום המינימלי שלה דומה לבלוק ז'ורדן המתאים. ההפרש בין כל שני בלוקי ז'ורדן מאותו סדר הוא מטריצה סקלרית, והבלוק המתאים ל-0 הוא מטריצה נילפוטנטית.

מטריצת בלוקים המורכבת מבלוקי ז'ורדן, בסדר כלשהו, נקראת מטריצת ז'ורדן. מטריצות ז'ורדן הן דומות זו לזו רק כאשר הן מורכבות מאותם בלוקים, עד כדי סדר, ולכן המונח "צורת ז'ורדן" מתייחס לפעמים לקבוצת הבלוקים המרכיבים את המטריצה, ולאו דווקא אל המטריצה עצמה.

צורת ז'ורדן של מטריצה

למטריצה יש צורת ז'ורדן מעל שדה נתון, אם ורק אם הפולינום האופייני של המטריצה מתפרק לגורמים לינאריים מעל השדה. בפרט, לכל מטריצה (ממשית או מרוכבת) יש צורת ז'ורדן מעל המספרים המרוכבים.

לכל מטריצה (שיש לה צורת ז'ורדן) יש צורת ז'ורדן יחידה (עד כדי תמורה על סדר הבלוקים). לכן שתי מטריצות דומות זו לזו אם ורק אם יש להן אותה צורת ז'ורדן. מצורת ז'ורדן אפשר להסיק כמה וכמה תכונות של המטריצה, שהן אינווריאנטיות להצמדה:

  1. הריבוי הגאומטרי של ערך עצמי (של מטריצה A) הוא מספר הבלוקים המתאימים לערך העצמי הזה בצורת ז'ורדן של A.
  2. החזקה של הגורם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x-\lambda} בפולינום המינימלי של A היא כגודל הבלוק הגדול ביותר המתאים ל-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda } בצורת ז'ורדן של המטריצה.
  3. הריבוי האלגברי של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda\ } בפולינום האופייני הוא סכום הגדלים של הבלוקים המתאימים ל-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda } בצורת ז'ורדן.
  4. לכל i, הפסד הדרגה, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ k - \mathop{\rm rank}J_k(0)^i} , הוא הקטן מבין k ו-i. מכאן נובע שמספר הבלוקים בגודל i של הערך העצמי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \lambda} נתון על ידי הנוסחה: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ N_i = \mathop{\rm rank} (T - \lambda I)^{i-1} - 2\mathop{\rm rank} (T - \lambda I)^{i} + \mathop{\rm rank} (T - \lambda I)^{i+1}} . (הבלוקים של ערכים עצמיים אחרים אינם תורמים לחישוב הזה דבר). מכאן נובעת היחידות של צורת ז'ורדן, שהרי הדרגות, ולכן המספרים , נשמרים תחת הצמדה, והם קובעים את צורת ז'ורדן דרך מספר הבלוקים מכל גודל.

לדוגמה, צורת ז'ורדן של מטריצה אלכסונית היא המטריצה האלכסונית עצמה.

מציאת צורת ז'ורדן

חישוב באמצעות דרגות

אם הערכים העצמיים של המטריצה ידועים, אפשר למצוא את צורת ז'ורדן שלה באמצעות חישוב הדרגות בנוסחה הנתונה בתכונה 4 לעיל. הריבוי האלגברי של כל ערך עצמי בפולינום האופייני ובפולינום המינימלי מספקים בדרך כלל מידע חלקי; אלא שאם הם שווים, למטריצה יש רק בלוק ז'ורדן אחד המתאים לאותו ערך עצמי.

חישוב בסיס

כידוע, כל מטריצה מייצגת העתקה לינארית בכל בסיס, והצמדת המטריצה (מציאת יחס שקילות, דמיון) שקולה להחלפת הבסיס; מטריצות צמודות (דומות) מייצגות את אותה העתקה לינארית. כך אפשר לנסח את התכונות של צורת ז'ורדן בשפה של העתקות לינאריות: הצמדת מטריצה לצורת ז'ורדן שלה שקולה למציאת פירוק של המרחב הווקטורי ל"תת-מרחבים ציקליים". תת-מרחב ציקלי הוא מרחב שיש לו בסיס הכולל את הווקטורים השונים מאפס בסדרה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle v, T(v), T^2(v), \cdots} עבור v מתאים (ולכן בהכרח הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T^k(v)=0} ל-k גדול מספיק; בסיס כזה נקרא בסיס ציקלי של תת-המרחב; ראו גם מודול ציקלי). איחוד הבסיסים האלה בפירוק של המרחב נותן את צורת ז'ורדן של המטריצה המייצגת באופן הבא: אם T היא ההעתקה שהמטריצה A מייצגת בבסיס הסטנדרטי, אז הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ P^{-1}AP} היא צורת ז'ורדן של A אם ורק אם העמודות של P מהוות בסיס בעל המבנה הציקלי הנזכר לעיל.

תהי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T } טרנספורמציה לינארית שהפולינום האופייני שלה מתפרק לגורמים לינאריים מעל השדה, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \lambda _1 , \lambda _2 , ... , \lambda _k } הערכים העצמיים השונים, ותהי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ A } המטריצה המייצגת של T בבסיס הסטנדרטי. נראה כיצד למצוא בסיס על פיו מיוצגת הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T } על ידי מטריצת ז'ורדן. לכל ערך עצמי של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T } נסמן ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ m_i } את הריבוי האלגברי של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \lambda _i} . יהי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ V_i } המרחב העצמי המוכלל של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \lambda _i} , שהוא אוסף כל הווקטורים עבורם קיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ r} כך ש: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ (T - \lambda _i I )^r v =0.} . נסמן ב- את הצמצום של T אל המרחב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ V_i} (שהוא מוגדר היטב מכיוון ש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ V_i} הוא תת-מרחב אינווריאנטי). הטרנספורמציה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T _{ | V_i } } היא נילפוטנטית מסדר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ r_i } (ולמעשה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ r_i \le m_i} ).

כעת, אפשר להוכיח שכל מרחב עצמי מוכלל הוא סכום ישר של תת-מרחבים ציקליים; לכל אחד מאלה יש בסיס ציקלי; ואיחוד כל הבסיסים הציקליים הוא בסיס של המרחב כולו.

לקריאה נוספת

  • אלגברה לינארית 2, יחידות 7,8,9 האוניברסיטה הפתוחה, תשמ"ב
  • שמשון עמיצור, אלגברה א', האוניברסיטה העברית, תש"ל

קישורים חיצוניים