הכללה (מתמטיקה)

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

הכללה היא מאבני היסוד של הפעילות המתמטית. הכללה פירושה לקיחת עצם מתמטי מסוים, ומעבר ממנו לעצם כללי יותר, שהעצם שממנו יצאנו מהווה מקרה פרטי שלו.

מושג B מהווה הכללה של מושג A כאשר:

  • כל מופע של המושג A הוא גם מופע של המושג B.
  • יש מופע של המושג B שאינו מופע של המושג A.

יתרונה הבולט של ההכללה היא בכך שהיא עוברת מהדיון במושג הפרטי, המצומצם, למושג כללי, ובכך מאפשרת את יישומו של הידע שנצבר אודות המושג המצומצם בעולם המקיף יותר שבו חל המושג הכללי. בנוסף, ההתעסקות ב"תמונה הגדולה" מאפשרת לעיתים לגלות מידע חדש על המושג הפרטי, שעד אז היה קשה להבחין בו בשל ריבוי הפרטים הלא רלוונטיים.

דוגמאות

דוגמה מפורטת

נתחיל מטענה פשוטה אודות מספרים ונכליל אותה:

  • 6 מתחלק ב-3.

זו טענה פשוטה וידועה לכל. ניתן להכליל אותה לטענה הבאה:

  • לכל מספר טבעי a מתקיים שהמספר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^3-a} מתחלק ב-3.

טענה זו נכונה משום ש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^3-a=a(a-1)(a+1)} . זוהי מכפלה של שלושה מספרים עוקבים, ולכן בהכרח אחד מהם מתחלק ב-3, ולכן כך גם המכפלה כולה. אם נציב a=2 נקבל את הטענה ש-6 מתחלק ב-3, ממנה התחלנו.

  • המשפט הקטן של פרמה: לכל p ראשוני ולכל a טבעי, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^p-a} מתחלק ב-p.

משפט זה מכליל את הטענה הקודמת שמתקבלת מהמשפט כאשר מציבים p=3.

  • משפט אוילר: לכל n טבעי ולכל a טבעי זר ל-n, מתקיים ש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^{\phi (n)}-1} מתחלק ב-n (הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi (n)} היא פונקציית אוילר, ששווה למספר המספרים הזרים ל-n וקטנים ממנו).

משפט אוילר מכליל את המשפט הקטן של פרמה. שכן אם ניקח את n להיות ראשוני p, אז הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi (p)=p-1} , ונקבל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^{p-1}-1} מתחלק ב-p. לאחר כפל ב-a מתקבל הנוסח המוכר של המשפט הקטן של פרמה.

עד כה עסקנו במספרים טבעיים. אך ההכללה הבאה תחשוף את הטבע האמיתי של הטענות שעסקנו בהן, שיש להן משמעות אלגברית עמוקה.

  • תהי G חבורה מסדר n, ויהי g איבר ב-G, אזי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle g^n=e} , כאשר e הוא איבר היחידה של G.

טענה זו מכלילה את משפט אוילר, משום שקבוצת המספרים הטבעיים הקטנים וזרים ל-n היא חבורה ביחס לכפל מודולו n (הקרויה חבורת אוילר), שהסדר שלה הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi (n)} ואיבר היחידה שלה הוא 1.

הטענה האחרונה היא מקרה פרטי של טענה מרכזית בתורת החבורות:

הטענה הקודמת נובעת ממשפט לגראנז' אם ניקח את התת-חבורה הציקלית הנוצרת על ידי האיבר g.

על אף שכל טענה כאן חזקה יותר מזו הקודמת לה, רמת הקושי בהוכחתן אינה עולה משמעותית, ולמעשה ההוכחה של ארבע הטענות האחרונות כמעט זהה. החוכמה בהכללה היא להבין אילו תכונות של העצמים בהם עוסקים חשובות, ואילו רק מפריעות לראות את העיקר. במקרה הזה העיסוק במספרים דווקא (על כל התורה העשירה שהם מגלמים) לא היה נחוץ, וההבנה הזו היא שאפשרה להוכיח תוצאה כללית בהרבה.

ראו גם

קישורים חיצוניים

הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0

הכללה (מתמטיקה)33992435Q170084