סדרת מאייר-ויאטוריס
סדרת מאייר-ויאטוריס (Mayer–Vietoris sequence) היא סדרה מדויקת המקשרת את חבורות ההומולוגיה של מרחב טופולוגי אל חבורות ההומולוגיה של כיסוי טוב שלו. היא מהווה כלי מרכזי ובסיסי לחישוב ההומולוגיה של מרחב טופולוגי, ובמובן מסוים מהווה מקבילה למשפט ואן קמפן בחישוב החבורה היסודית.
הסדרה נקראת על שם שני המתמטיקאים האוסטרים לאופולד ויאטוריס ווולטר מאייר, שעסקו רבות בטופולוגיה.
הגדרה
יהי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} מרחב טופולוגי. כעת, יהיו הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle U,V} שני תתי-מרחבים של , המהווים כיסוי טוב של המרחב (כלומר, איחוד הפנימים שלהם שווה למרחב: ), ונניח שחיתוכים לא ריק. מתקבלת הדיאגרמה בימין, כאשר ההעתקות הן העתקות ההכלה.
נביט בסדרה הבאה[1]:
לכן, מתקבלת סדרה מדויקת של חבורות ההומולוגיה:
כאשר היא חבורת ההומולוגיה ביחס לכיסוי. כעת, משפט חשוב קובע כי העתקת ההכלה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle i:C_n^{\{U,V\}}(X) \to C_n(X)} משרה איזומורפיזם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle i_*: H_n^{\{U,V\}}(X) \to H_n(X)} , ולכן (אם מרכיבים הומומורפיזם זה בדיאגרמה) מתקבלת סדרת מאייר-ויאטוריס:
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dots \longrightarrow H_n(U \cap V) \longrightarrow H_n(U) \oplus H_n(V) \longrightarrow H_n(X) \longrightarrow H_{n-1}(U \cap V)\longrightarrow \dots}
לרוב נוח להשתמש בסדרת מאייר-ויאטוריס על חבורות ההומולוגיה המצומצמות:
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dots \longrightarrow \tilde{H}_n(U \cap V) \longrightarrow \tilde{H}_n(U) \oplus \tilde{H}_n(V) \longrightarrow \tilde{H}_n(X) \longrightarrow \tilde{H}_{n-1}(U \cap V)\longrightarrow \dots}
טבעיות
האיזומורפיזם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle i_*: H_n^{\{U,V\}}(X) \to H_n(X)} שהוזכר לעיל הוא למעשה איזומורפיזם טבעי ביחס להעתקות המכבדות את הכיסוי. כלומר, נניח שנתונים שני מרחבים טופולוגיים בעלי כיסויים טובים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{int}(A_1) \cup \operatorname{int}(B_1) = X_1} ,הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{int}(A_2) \cup \operatorname{int}(B_2) = X_2} , והעתקה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f:X_1 \to X_2} רציפה המכבדת את הכיסויים (כלומר, . אז ההעתקות בסדרת מאייר-ויאטוריס (ובעיקר ההעתקה המחברת) מתחלפות עם ההעתקה המושרית הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_*} , ומקבלים דיאגרמה מתחלפת:
בפרט, המעבר מ-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_n^{\{U,V\}}(X)} אל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_n(X)} בסדר מאייר-ויאטוריס הוא טבעי.
לטענה זו מספר שימושים, בעיקר בשילוב עם העובדה שהאיזומורפיזם בין ההומולוגיה הראשונה אל האבליניזציה של החבורה היסודית הוא טבעי - ניתן להבין כך העתקות לא טריוויאליות בסדרת מאייר-ויאטוריס ולחשב את החבורות (ראו בדוגמאות).
דוגמאות
ספירות
נוכיח שחבורות ההומולוגיה של הספירות הן
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde{H}_i(S^n)=\begin{cases}\mathbb{Z} & i=n\\0 & i\neq n\end{cases}} .
נחלק את הספירה לשתי המיספירות עם קצת חיתוך: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle B = \{\bar{x} \in S^n : x_n < -\frac{1}{10}\}} , הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A = \{\bar{x} \in S^n : x_n > \frac{1}{10}\}} . שתיהן כוויצות, ולכן . לכן מסדרת מאייר-ויאטוריס אפשר להסיק:
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0 \to \tilde{H}_i(S^n) \to \tilde{H}_{i-1}(S^{n-1})\to 0}
כלומר יש איזומורפיזם, ומסיימים באינדוקציה.
מסקנות
- אפשר להסיק שהשפה של דיסק איננה נסג שלו, אחרת היה מונומורפיזם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{Z}=\tilde{H}_{n-1}(S^{n-1}) \hookrightarrow \tilde{H}_{n-1}(D^n)=0} (זהו מקרה פרטי של משפט בורסוק-אולם).
- משפט נקודת השבת של בראוור - המשפט טוען כי לכל פונקציה רציפה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f:D^n \to D^n} יש נקודת שבת. מוכיחים אותו בשלילה: אחרת, ניתן להגדיר נסיגה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle r:D^n \to \partial D^n} על ידי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle r(x)} יהיה נקודת החיתוך של הקו מ-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} ל-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} עם הספירה. מגיעים לסתירה למסקנה לעיל.
שיקופים, נקודות שבת ושדות וקטוריים
בסעיף זה נראה, בעזרת הטבעיות של סדרת מאייר-ויאטוריס, טענות מגאומטריה דיפרנציאלית.
ניישם את הטבעיות למקרה לעיל של הספירות; נוכיח כי השיקוף הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_i:S^n\to S^n , ^n R_i(x_1\dots,x_n)=(x_1,\dots,-x_i,\dots,x_n)} , משרה את הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\operatorname{id}} על חבורת ההומולוגיה. ההוכחה באינדוקציה - הטענה עבור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=0} ברורה; כעת, נחלק את הספירה לכיסוי טוב כלעיל, אך נדאג ש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A,B} לא יבחרו בציר השיקוף הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle i} (כדי שהשיקוף יכבד את הכיסוי); נשתמש בטבעיות:
כאשר החלק האדום נכון באינדוקציה. לכן: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle ^{ n }R{ _{ i_* } }(z)=\Delta ^{ -1 }(^{ n-1 }R{ _{ i_{ * } } }(\Delta (z)))=\Delta ^{ -1 }(-\Delta (z))=-z} כדרוש.
מהטענה לעיל ניתן להעסיק כי כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=2k} זוגי, ההעתקה האנטיפודית הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A:S^n \to S^n , A(v)=-v} איננה הומוטופית לזהות , שכן שתיהן משרות העתקות שונות על ההומולוגיה: הזהות את הזהות, אך האנטיפודית היא הרכבה של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2k+1} שיקופים, ולכן משרה את הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-1)^{2k+1}\operatorname{id}=-\operatorname{id}} .
טענה טכנית נוספת היא - אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f,g:S^n \to S^n} כ ש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) \neq g(x)} לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \in S^n} , אז הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f \sim g} (רואים זאת על ידי ההומוטופיה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle H(x,t)=\frac{(1-t) f(x)+f g(x)}{||(1-t) f(x)+f g(x)||}} ).
מהטענות לעיל ניתן להסיק כי כאשר זוגי, לכל העתקה רציפה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f:S^n \to S^n} יש נקודה בה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = x} או הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = -x} - אחרת הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f \neq \operatorname{id}} ולכן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f \sim -\operatorname{id}=A} , וגם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f \neq -\operatorname{id}} ולכן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f \sim \operatorname{id}} , וביחד הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{id} \sim A} בסתירה לנאמר לעיל.
מטענה זו ניתן להסיק גם כי כל העתקה רציפה מהמרחב הפרויקטיבי הממשי מממד זוגי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f:\mathbb{R}P^n \to \mathbb{R}P^n} יש נקודת שבת. ניתן גם להסיק כי כל שדה וקטורי של הספירה מממד זוגי חייב להתאפס.
לכל הטענות יש דוגמה נגדית כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} אי-זוגי.
n-זר
n-זר של ספירות הוא איחוד נקודתי שלהן - הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle S^{k_1} \vee \dots \vee S^{k_n}} . בעזרת סדרת מאייר ויאטוריס ואינדוקציה ניתן להראות שמתקיים
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde{H}_i(S^{k_1} \vee \dots S^{k_t}) = \mathbb{Z}^{\sum_{j=1}^{n}{\delta_{i,k_j}}}}
כלומר, זו חבורה אבלית חופשית מסדר כמספר הממדים של הספרות ששווה לסדר החבורה.
משטחים סגורים
את הסעיף הקודם ניתן להכליל ולחשב את חבורות ההומולוגיה של כל המשטחים הסגורים: ממיונם ידוע שהם כוללים את הספירות, ה-n-טורוסים וה-n-מישורים פרויקטיביים.
n-טורוס
כדי להשתמש בסדרת מאייר-ויאטוריס, ניקח את הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle U} להיות עיגול קטן על ה-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} -טורוס, ואת הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle V} להיות כל השאר, עם טבעת חפיפה (כמו במשפט ואן קמפן). אז נקבל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle V \cong * , U \cap V \cong S^1} ; התיאור של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle U} הוא גאומטרי - לאחר הוצאת דיסק מהטורוס ניתן להרחיב את החור סביב הכיוונים האופקי והאנכי, ואז מקבלים מרחב השקול ל-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2n} -זר, וההומולוגיה שלו חושבה בסעיף לעיל. אם כן הסדרה היא
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cdots \longrightarrow \begin{matrix} 0 \\ \tilde { H } _{ 3 }(U\cap V) \end{matrix}\longrightarrow \begin{matrix} 0 \\ \tilde { H } _{ 3 }(U)\oplus \tilde { H } _{ 3 }(V) \end{matrix}\longrightarrow \begin{matrix} 0 \\ \tilde { H } _{ 3 }(X) \end{matrix}\longrightarrow }
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \longrightarrow \begin{matrix} 0 \\ \tilde { H } _{ 2 }(U\cap V) \end{matrix}\longrightarrow \begin{matrix} 0 \\ \tilde { H } _{ 2 }(U)\oplus \tilde { H } _{ 2 }(V) \end{matrix}\longrightarrow \begin{matrix} \mathbb{Z} \\ \tilde { H } _{ 2 }(X) \end{matrix}\longrightarrow }
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \longrightarrow \begin{matrix} \mathbb{Z} \\ \tilde { H } _{ 1 }(U\cap V) \end{matrix}\overset { 1\to (\bar { 0 } ,0) }{ \longrightarrow } \begin{matrix} { \mathbb{Z} }^{ 2n } \\ \tilde { H } _{ 1 }(U)\oplus \tilde { H } _{ 1 }(V) \end{matrix}\longrightarrow \begin{matrix} { \mathbb{Z} }^{ 2n } \\ \tilde { H } _{ 1 }(X) \end{matrix}\longrightarrow 0 }
כאשר את ההעתקה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde { H } _{ 1 }(U\cap V) \to \tilde{H}_{1}(V)} מבינים לפי ההערה לעיל על הטבעיות - ההעתקה המקבילה עבור החבורה היסודית היא (כאמור בחישוב המקביל בערך על משפט ואן קמפן) הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a \mapsto [a_1,b_1] \cdot \dots \cdot [a_n,b_n]} , ובמקרה שלנו החבורות אבליות ולכן ההעתקה היא אכן העתקת האפס. שאר החישוב הוא לפי דיוק הסדרה.
n-מישור פרויקטיבי
החלוקה לסביבות היא בדיוק כמו ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} -טורוס. במקרה זה, ההעתקה החשובה שנורשת מהחישוב של החבורה היסודית היא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a \to a_1^2 \dots a_n^2} , והחבורות הן:
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde{H}_{i}(nP)=\begin{cases} \mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}^{n-1} & i=1\\ 0 & i\neq1 \end{cases} }
מתיחה של מרחב
המתיחה של מרחב טופולוגי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} מוגדרת להיות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle SX = (X \times I)/\{(x_1,0)\sim(x_2,0),(x_1,1)\sim(x_2,1) \mbox{ for all } x_1,x_2 \in X\}} . ההומולוגיה של המתיחה עולה מדרגה אחת מההומולוגיה של המרחב עצמו, כלומר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde{H}_n(X) = \tilde{H}_{n+1}(SX)} . טענה זו מוכיחים בעזרת סדרת מאייר-ויאטוריס - נגדיר
, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle U=X \times \left[ 0,\frac{1}{2} \right]/\sim}
שניהם מרחבים כוויצים, שכן יש נסג עיוותי אל בבסיסים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X \times \{1\}} ,הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X \times \{0\}} , והם מכווצים לנקודה. החיתוך הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X\times \left\{ \frac{1}{2} \right\}} שהומיאומורפי ל-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} (היחס לא משפיע עליו). לכן, לפי הסדרה:
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0=\tilde{H}_{n+1}(U) \oplus \tilde{H}_{n+1} (V) \to \tilde{H}_{n+1}(SX) \to \tilde{H}_{n} (X) \to \tilde{H}_{n}(U) \oplus \tilde{H}_{n}(V)=0}
מתקבל איזומורפיזם.
משפט העקומה של ז'ורדן
משפט העקומה של ז'ורדן קובע כי עקומה סגורה רציפה במישור מחלקת אותו לשני חלקים, כלומר לשני רכיבי קשירות.
על אף שהוא דיי אינטואיטיבי, אין לו הוכחה פשוטה. אחת ההוכחות הקלות למשפט נתונות בעזרת הומולוגיה: למעשה, בהינתן שיכון הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f: S^1 \to \mathbb{R}^2} , המשפט טוען שהמרחב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}^2 \setminus f(S^1)} הוא בעל שני רכיבי קשירות, כלומר שחבורת ההומולוגיה האפס של המרחב היא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{Z}^2} . את החבורה הזו ניתן לחשב בעזרת סדרת מאייר-ויאטוריס - מחלקים את הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle S^1} לחצי העיגול העליון הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} וחצי העיגול התחתון הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle B} , ומשתמשים בסדרה עבור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle U=\mathbb{R}^2 \setminus f(A) , V=\mathbb{R}^2 \setminus f(B) } .
הומולוגיה של מרחב CW
סדרת מאייר-ויאטוריס היא כלי חשוב העוזר בפיתוח שיטה כללית ואלגוריתמית לחישוב כל חבורות ההומולוגיה של מרחבי CW סוף-ממדיים מסוימים. יש שימושים חוזרים ונשנים בסדרת מאייר-ויאטוריס בהוכחת השיטה.
הערות שוליים
- ^ עבור הסימונים ראו בערך חבורות ההומולוגיה