מכפלה ריקה

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

במתמטיקה, מכפלה ריקה היא מכפלה ללא גורמים, והיא שווה ליחידה הכפלית, 1. המכפלה הריקה מוגדרת כמקרה פרטי של ההגדרה הכללית של מכפלה, והיא שומרת על העקביות של תכונות שימושיות הקשורות בכפל.

כפי שיוסבר להלן, ההגדרה הכי טבעית למכפלה ריקה היא איבר היחידה 1, האדיש לכפל. זאת באופן דומה להגדרת הסכום הריק כאיבר היחידה החיבורי, 0. צורות מוכרות של המכפלה הריקה הן הטענות לכל a שונה מאפס, (אפס עצרת) ו- לכל n<m. הגדרות אלו עקביות עם התכונות של הפעולות הללו. לדוגמה לפי חוקי חזקות: .

משפטים רבים מניחים את קיום המכפלה הריקה. לדוגמה קיומה של המכפלה הריקה מאפשר את תקפות המשפט היסודי של האריתמטיקה לכל מספר טבעי כולל 1.

מדוע המכפלה הריקה שווה ל-1

יש שתי דרכים להגדיר את המכפלה של קבוצה סופית של מספרים טבעיים. דרך אחת היא להגדיר את המכפלה של שני מספרים (באינדוקציה), ואז להגדיר את המכפלה של כל קבוצה סופית באינדוקציה על גודל הקבוצה: . כדי שנוסחה אינדוקטיבית זו תתאים למקרה n=1, יש לקבל כי המכפלה הריקה היא איבר היחידה הכפלי.

דרך נוספת להגדיר את המכפלה כעוצמה של המכפלה הקרטזית של קבוצות בגדלים (ההגדרה מתלכדת עם ההגדרה האינדוקטיבית). אבל המכפלה הקרטזית של משפחה ריקה של קבוצות היא קבוצה בת איבר אחד (ראו להלן), ולכן המכפלה הריקה שווה ל-1.

הכללות

מההגדרה הפורמלית של המכפלה הקרטזית, כאוסף כל פונקציות הבחירה מקבוצת האינדקסים, נובעת הזהות:

כלומר מכפלה קרטזית ריקה של קבוצות היא יחידון שאיברו היחיד הוא הפונקציה הריקה. אם נפעיל על השוויון את כללי האריתמטיקה של עוצמות נקבל כי מכפלה ריקה של עוצמות, ובכללם מכפלה ריקה של מספרים טבעיים, שווה לעוצמת היחידון, שהיא 1.

באופן כללי מגדירים לרוב תוצאה ריקה של פעולה בינארית בתור האיבר הנייטרלי של הפעולה. לדוגמה חיתוך ריק של תת-קבוצות של קבוצה X שווה לקבוצה X עצמה.

אפס בחזקת אפס

הביטוי אפס בחזקת אפס, המסומן , הוא ביטוי מתמטי ללא הגדרה חד-משמעית.

ערכו יכול להיות 1 או לא מוגדר.

בתחומים שונים במתמטיקה קיימת הסכמה כללית לגבי ערכו של ביטוי זה, למשל באלגברה וקומבינטוריקה, נהוג לטעון בעוד שבאנליזה מתמטית אין הגדרה ל- .

הסבר פשוט לתופעה נובע מחוקי החזקות הבסייסים לגביהם קיימת הסכמה רחבה -

פעולת החזקה מוגדרת כמכפלה ריקה שערכה 1 כאשר

וכן פעולת החזקה אשר נותנת את התוצאה 0 כאשר , אך אם בכל זאת נציב נקבל חלוקה באפס שהיא פעולה לא מוגדרת. מכאן נובע שהביטוי יכול להיות שווה או ל-1 או לא מוגדר, תלוי בגישה:

מצד אחד, ישנם תחומים בהם הביטוי מוגדר כמכפלה ריקה. לדוגמה בתורת הקבוצות ובקומבינטוריקה תוצאת הפעולה ab מוגדרת כמספר הפונקציות מקבוצה עם b איברים לקבוצה עם a איברים. הגדרה זו מתלכדת עם ההגדרה האינטואיטיבית של חזקות ובנוסף היא מגדירה את השוויון , שכן בין שתי קבוצות ריקות קיימת פונקציה יחידה: הפונקציה הריקה. קיימים תחומים נוספים שבהם שימושי להגדיר , למשל בבינום של ניוטון (במקרה ואחד המחוברים שווה ל-0).

מצד שני, ישנם טיעונים בזכות חוסר הגדרה של הביטוי. לדוגמה לפי חוקי חזקות שהודגמו קודם , ביטוי שאם נציב בו a=0 נקבל חלוקה באפס שהיא פעולה לא מוגדרת. באנליזה ניתן למצוא גבולות רבים הנותנים תוצאות שונות לביטוי 00 ולכן בתחום זה נהוג שלא להגדיר את הביטוי.

קישורים חיצוניים

הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0

29596183מכפלה ריקה