מידת דיראק

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש
תרשים המציג את כל תתי הקבוצות האפשריות של קבוצה בת 3 נקודות {x,y,z }. מידת דיראק δx קובעת גודל של 1 לכל הקבוצות בחצי השמאלי העליון של התרשים ו-0 לכל הקבוצות בחצי הימני התחתון.

במתמטיקה, ובפרט בתורת המידה, מידת דיראק היא מידה שקובעת גודל לקבוצה רק על סמך הכלה או אי-הכלה של איבר קבוע על ידי הקבוצה. זוהי דרך לפורמליזציה של הרעיון של פונקציית הדלתא של דיראק, כלי חשוב בפיזיקה ובתחומים הנדסיים אחרים.

הגדרה

בהינתן מרחב מדיד ואיבר , מידת דיראק המתאימה ל- מסומנת על ידי ומוגדרת באופן הבא, עבור קבוצה כלשהי :

כאשר היא הפונקציה המציינת של .

מידת דיראק היא מידה אטומית, ו- הוא האטום היחידוני היחיד בה. בנוסף, היא מידת הסתברות, המייצגת מצב של התקיימות התוצאה כמעט בוודאות במרחב המדגם . מידות דיראק הן נקודות הקצה (אנ') של הקבוצה הקמורה של מידות ההסתברות על .

מידת דיראק מקבלת את שמה בעקבות פונקציית הדלתא של דיראק, בשל התנהגותן הדומה של השתיים. למשל, כאשר מבצעים אינטגרל לבג לפי מידת דיראק, מתקיים הקשר הבא:

אשר דומה מאוד לקשר הבא, שנחשב לפעמים לחלק מההגדרה של פונקציית הדלתא:

תכונות

יהי מרחב מדיד ותהי מידת דיראק שמרכזה .

  • מידת הסתברות ולכן מידה סופית, ובפרט סיגמא-סופית.

נניח ש- הוא מרחב טופולוגי ושהסיגמא-אלגברה עדינה לפחות כמו סיגמא-אלגברת בורל של (כלומר שכל קבוצת בורל היא מדידה).

  • מידה חיובית ממש אם ורק אם שייך לכל קבוצה פתוחה (ולא ריקה) בטופולוגיה . לדוגמה, עבור הטופולוגיה הטריוויאלית .
  • מכיוון ש- מידת הסתברות, היא מידה סופית-מקומית (אנ').
  • אם הוא מרחב האוסדורף עם סיגמא-אלגברת בורל המתאימה, אז היא מידה רגולרית פנימית (אנ'), משום שיחידון כמו הוא תמיד קומפקטי.
  • ‏בהנחה שהטופולוגיה עדינה מספיק כך ש- קבוצה סגורה (זה המצב במקרים רבים, למשל במרחב האוסדורף), אז היא גם מידה רגולרית חיצונית (אנ').
  • ‏במרחבים בהם שלוש התכונות האחרונות מתקיימות, מידת דיראק היא מידת רדון, ישירות מהגדרתה של זו.
  • ‏אם סגורה, אז התומך של הוא (אחרת, התומך הוא הסגור של ב-). בנוסף, היא מידת ההסתברות היחידה שהתומך שלה הוא .
  • היא מידה סינגולרית ביחס למידת לבג על המרחב האוקלידי .

הכללות

מידה בדידה דומה למידת דיראק, אלא שהיא מרוכזת בקבוצה בת מנייה של נקודות במקום בנקודה יחידה. בניסוח פורמלי יותר: מידה על הישר הממשי נקראת מידה בדידה (ביחס למידת לבג) אם התומך שלה הוא לכל היותר קבוצה בת מנייה.

קישורים חיצוניים

  • Dieudonné, Jean (1976). "Examples of measures". Treatise on analysis, Part 2. Academic Press. p. 100. ISBN 0-12-215502-5.
  • Benedetto, John (1997). "§2.1.3 Definition, δ". Harmonic analysis and applications. CRC Press. p. 72. ISBN 0-8493-7879-6.
הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0

מידת דיראק37216179Q1227387