כמעט כל (מתמטיקה)

מתוך המכלול, האנציקלופדיה היהודית
(הופנה מהדף כמעט בוודאות)
קפיצה לניווט קפיצה לחיפוש

בערך זה
נעשה שימוש
בסימנים מוסכמים
מתחום המתמטיקה.
להבהרת הסימנים
ראו סימון מתמטי.

במתמטיקה, משתמשים לעיתים בביטוי כמעט כל במשמעות מדויקת, שפירושה "הכל, פרט אולי לקבוצה זניחה". השאלה אילו קבוצות זניחות נקבעת לפי ההקשר. בכל המקרים, איחוד של שתי קבוצות זניחות הוא זניח, וכך נשמרת המוסכמה, שאם "כמעט בכל מקום מתקיים התנאי P" ו"כמעט בכל מקום מתקיים התנאי Q", אז "כמעט בכל מקום מתקיימים התנאים P ו-Q גם יחד".

הכל פרט למספר סופי

כאשר עוסקים בסדרות, או בקבוצות בנות מנייה באופן כללי, פירושו המקובל של המונח "כמעט כל" הוא "פרט למספר סופי של יוצאי דופן". לדוגמה, אומרים על סדרה שהיא מתכנסת לגבול x אם ורק אם לכל סביבה של x, כמעט כל אברי הסדרה נמצאים באותה סביבה - כלומר, יש רק מספר סופי של איברים מחוץ לסביבה.

"המשפט הטיפשי של האריתמטיקה"[1][2] קובע, בדרך הלצה, שכמעט כל מספר טבעי הוא "גדול מאוד". אף על פי ש"גדול מאוד" אינה תכונה מתמטית מדויקת, אפשר לצפות שיהיו לה שתי תכונות:

  • יש לפחות מספר אחד שהוא גדול מאוד.
  • אם מספר מסוים הוא גדול מאוד, אז גם כל מספר גדול ממנו הוא גדול מאוד.

כעת אפשר להוכיח את המשפט בקלות: יהי n מספר גדול מאד (קיומו של מספר כזה מובטח מן התכונה הראשונה). כל המספרים הגדולים מ-n הם גדולים מאד (על-פי התכונה השנייה), ולכן יש לכל היותר n-1 מספרים שאינם גדולים מאוד, ומספרם סופי.

הכל פרט לקבוצה בת צפיפות אפס

כאשר עולה הצורך בניתוח מדוקדק יותר של קבוצות אינסופיות, למשל, בתורת המספרים, המונח "כמעט כל" עשוי לקבל משמעות של צפיפות. "כמעט כל מספר מקיים תכונה P", אם הצפיפות של קבוצת המספרים שאינם מקיימים את התכונה היא אפס. נניח ש- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ p(n)} הוא מספרם של הטבעיים המקיימים תכונה מסוימת. אומרים שכמעט כל המספרים מקיימים את התכונה, אם הגבול הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ p(n)/n} ← 1 כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ n} ← ∞. אם P הוא שם התכונה, אפשר לסמן את העובדה שכמעט כל המספרים מקיימים את P על ידי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\forall^\infty n) P(n)} .

למשל, משפט המספרים הראשוניים קובע כי המספר של ראשוניים הקטנים ממספר נתון הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ n} שווה בקירוב ל- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ n/\ln(n)} . לכן החלק היחסי של מספרים ראשוניים הולך ופוחת לאפס כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ n} גדל. נובע מזה שכמעט כל המספרים הטבעיים הם מספרים פריקים, אף על פי שקיימים אינסוף מספרים ראשוניים.

הכל פרט לקבוצה ממידה אפס

בתורת המידה אומרים שתכונה מתקיימת כמעט בכל מקום (Almost everywhere או .a.e או בעברית: כ.ב.מ.) אם לקבוצת הנקודות שבהן היא אינה מתקיימת יש מידה אפס. כך למשל, פונקציה היא "רציפה כמעט בכל מקום" אם קבוצת נקודות אי־הרציפות היא בעלת מידה אפס.

באותו אופן, בתורת ההסתברות אומרים שמאורע יתרחש כמעט בוודאות, או בהסתברות 1 אם ההסתברות לכך שלא יתרחש היא אפס. או בנוסח שקול, קבוצות הנקודות במרחב המדגם שאינן במאורע היא ממידה אפס (ביחס לפונקציית ההסתברות, שהיא מידה). לדוגמה, ההסתברות לכך שנקודה הנבחרת מהתפלגות אחידה על ריבוע תיפול על האלכסון שלו היא אפס, ולכן "כמעט כל הנקודות בריבוע אינן על האלכסון" או "נקודה אקראית בריבוע אינה על האלכסון בהסתברות 1".

המידה של איחוד בן מנייה של קבוצות ממידה אפס גם היא אפס. תחת הפירוש של תורת המידה, אם לכל n, התנאי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ P_n} מתקיים כמעט בכל מקום, אז כמעט בכל מקום מתקיימים כל התנאים יחדיו.

הכל פרט לקבוצה דלילה

בטופולוגיה של מרחבים מטריים או מרחבי בייר ("מרחב מהקטגוריה השנייה"), כאשר לא מוגדרת פונקציית מידה, ממלאות הקבוצות הדלילות את מקומן של הקבוצות ממידה אפס. במקרה זה, התכונה P "מתקיימת כמעט בכל מקום" אם היא מתקיימת מחוץ לקבוצה דלילה.

הערות שוליים


הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0