מידת רדון

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

בערך זה
נעשה שימוש
בסימנים מוסכמים
מתחום המתמטיקה.
להבהרת הסימנים
ראו סימון מתמטי.

בתורת המידה, מידת רדון היא מידה סופית-מקומית ורגולרית. לאוסף מידות רדון חשיבות מיוחדת גם באנליזה פונקציונלית, לאור משפט ההצגה של ריס. המשפט קובע קשר חד-חד-ערכי בין אוסף מידות רדון לבין אוסף הפונקציונלים הליניאריים החיוביים מעל למרחב הפונקציות הרציפות ובעלות תומך קומפקטי.

הגדרה: יהי מרחב טופולוגי ותהי סיגמא אלגברת בורל (כלומר, זו הנוצרת על ידי הטופולוגיה). מידה (חיובית) על נקראת מידת רדון, אם מתקיימים שני התנאים הבאים:

  1. סופיות מקומית: לכל קבוצה קומפקטית מתקיים .
  2. רגולריות: לכל קבוצה מדידה מתקיימת הן רגולריות חיצונית הן רגולריות פנימית, כלומר:

קישורים חיצוניים

  • מידת רדון, באתר MathWorld (באנגלית)   המזהה לא מולא ולא נמצא בוויקינתונים, נא למלא את הפרמטר.
ערך זה הוא קצרמר בנושא מתמטיקה. אתם מוזמנים לתרום למכלול ולהרחיב אותו.
הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0

23771335מידת רדון