חבורת לי

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

בגאומטריה דיפרנציאלית ובאלגברה, חבורת לי היא יריעה חלקה עם מבנה של חבורה, כך שפעולות החבורה חלקות ביחס למבנה הגאומטרי (והדיפרנציאלי) של היריעה. חבורות לי הן אובייקטים גאומטריים ואלגבריים בו-זמנית, ובהתאם ניתן להוכיח עליהן טענות חזקות - הן גאומטריות והן אלגבריות, על ידי שילוב בין המבנה הגאומטרי והאלגברי שמוגדר בהן.

בחבורת לי כל הנקודות על היריעה הן גם איברים בחבורה, ואם נבצע את פעולת החבורה על שני איברים כלשהם a ו-b, ובמקביל נבצע את הפעולה על שני איברים המייצגים נקודות קרובות על גבי היריעה c ו-d, אז גם המכפלות יהיו נקודות קרובות על גבי היריעה, כלומר ab תהיה נקודה קרובה ל-cd.

חבורות לי קרויות על שם המתמטיקאי הנורווגי סופוס לי והוגדרו על ידיו לראשונה בשנת 1870. לחבורות לי חשיבות רבה באנליזה מתמטית, בפיזיקה ובגאומטריה.

הגדרה פורמלית

חבורת לי היא אובייקט חבורתי בקטגוריה של יריעות חלקות, כלומר - בהינתן יריעה חלקה שהיא גם חבורה G, נאמר ש-G היא חבורת לי אם פעולות הכפל וההופכי של החבורה הן פונקציות חלקות. לדוגמה - אוסף המטריצות הריבועיות ההפיכות - (GL(n,F מסדר כלשהו מהווה חבורת לי.

אלגברת לי של חבורת לי

ערך מורחב – אלגברת לי

אלגברת לי של חבורת לי מתקבלת על ידי לקיחת המרחב המשיק של איבר היחידה: . לכל חבורת לי מתאימה אלגברת לי יחידה אך ההיפך איננו נכון. כך למשל, לאלגברת לי מתאימות חבורות לי , ו-. עם זאת, לכל אלגברת לי מתאימה חבורת לי יחידה שהיא פשוטת קשר.

את אלגבראות לי אפשר לאפיין באמצעות מערכות שורשים אותן אפשר לתאר גרפית באמצעות דיאגרמות דינקין.

מיון חבורות לי

כל חבורת לי קשירה, פשוטת קשר ופשוטה למחצה, היא מכפלה של חבורות לי פשוטות. לכל חבורת לי פשוטה מתאימה אלגברת לי פשוטה המתוארת על ידי דיאגרמת דינקין. באמצעות מיון דיאגרמות דינקין אפשר למיין את כל חבורות לי הפשוטות. מסתבר שאת דיאגרמות דינקין של חבורות לי פשוטות אפשר לסווג ל-4 משפחות כלליות ועוד 5 מקרים שלא נופלים באף משפחה: . להלן דיאגרמות דינקין המתאימות:

  • הדיאגרמות מטיפוס מתארות משפחת החבורות היוניטריות .
  • הדיאגרמות מטיפוס מתארות משפחת החבורות שהן הכיסוי האוניברסלי של החבורות האורתוגונליות .
  • הדיאגרמות מטיפוס מתארות משפחת החבורות שהיא חבורה סימפלקטית.
  • הדיאגרמות מטיפוס מתארות משפחת החבורות שהן הכיסוי האוניברסלי של החבורות האורתוגונליות .
  • החבורות שמתאימות לדיאגרמות לא נופלת באף משפחה לעיל ונקראות "חבורות לי ספורדיות".

ראו גם

קישורים חיצוניים

ערך זה הוא קצרמר בנושא מתמטיקה. אתם מוזמנים לתרום למכלול ולהרחיב אותו.
הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0