אי-שוויון מרקוב

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש
אי-שוויון מרקוב מספק חסם עליון להסתברות ש-X נמצא בתחום המסומן באדום

בתורת ההסתברות אי-שוויון מרקוב חוסם את ההסתברות לכך שמשתנה מקרי חיובי יהיה גדול מקבוע נתון. אי שוויון מרקוב (בדומה לאי-שוויון צ'בישב ואי-שוויון קולמוגורוב) הוא אחד מאי-השיוויונים הבסיסיים המשתמשים במושג התוחלת בשביל לאמוד (אם כי לעיתים רבות באופן גס) את פונקציית הצפיפות של משתנה מקרי. לדוגמה, מאי-השוויון נובע שלא ייתכן כי העשירון העליון של האוכלוסייה מרוויח פי 12 מהמשכורת הממוצעת. למרות פשטותו, אי-השוויון מאפשר להוכיח תוצאות לא טריוויאליות, כגון החוק החלש של המספרים הגדולים.

אי-שוויון מרקוב קרוי על שם המתמטיקאי הרוסי אנדרי מרקוב, אם כי קיים תיעוד שלו בעבודותיו המוקדמות של פפנוטי צ'בישב שהיה מורו של מרקוב. אי-שוויון מרקוב מכונה גם אי שוויון צ'בישב ואי שוויון ביניימה בספרות מקצועית רבה (בפרט באנליזה), אך אין לבלבל בינו לבין אי-שוויון צ'בישב המפורסם.

נוסח פורמלי

במושגים של תורת המידה, אי-שוויון מרקוב גורס כי בהינתן מרחב מידה ופונקציה מדידה אל הישר הממשי המורחב, אז לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle t>0} מתקיים:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu(\{x\in X:|f(x)|\geq t\}) \leq {1\over t}\int_X |f|\,d\mu.}

במקרה הפרטי של מרחב הסתברות (כלומר, המרחב בעל מידה 1), אי-השוויון שקול לטענה שעבור כל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a>0} מתקיים

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Pr(|X| \geq a) \leq \frac{E(|X|)}{a}}

.

הוכחה

מספיק להוכיח עבור פונקציה מדידה חיובית. f פונקציה מדידה, לכן הקבוצה הפענוח נכשל (שגיאת המרה. השרת ("https://wikimedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle \{x\in X:f(x)\geq t\}} מדידה. מתקיים:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle t * 1_{\{x\in X:f(x)\geq t\}} \leq f}

נוציא אינטגרל לבג על הקבוצה X משני צידי אי השוויון:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_X t * 1_{\{x\in X:f(x)\geq t\}}d\mu \leq \int_X f d\mu}

לפי הגדרת אינטגרל לבג על פונקציה מציינת של קבוצה מדידה, מתקיים:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle t * \mu(\{x\in X:f(x)\geq t\}) \leq \int_X f d\mu}

נחלק ב-t ונקבל:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu(\{x\in X:f(x)\geq t\}) \leq {1\over t} \int_X f d\mu}

כנדרש.

הוכחה למשתנים מקריים

יהי משתנה מקרי חיובי רציף (ההוכחה למקרה הבדיד דומה). אזי:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle E[X] = \int_{0}^{\infty}x f_{X}(x)dx \geq \int_{a}^{\infty}xf_{X}(x)dx \geq \int_{a}^{\infty}af_{X}(x)dx = aP(|X|\ge a) }