אינטגרלי מסלול

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

שיטת אינטגרלי המסלול היא תיאור של מכניקת הקוונטים על פיה, למשל, ניתן להציג את הסתברות המעבר של חלקיק מנקודה אחת לאחרת כסכום (אינטגרל) על כל המסלולים האפשריים בהם החלקיק יכול לעבור בין שתי הנקודות. שיטה זו פותחה על ידי פיזיקאי חתן פרס נובל ריצ'רד פיינמן ב-1948. גישה זו מצטרפת לאלו של שרדינגר והייזנברג כתיאור נוסף של מכניקת הקוונטים. היא מדגישה את השוני בין המכניקה הקוונטית והמכניקה הקלאסית, כיוון שבזו האחרונה, מעבר חלקיק בין שתי נקודות נתונות מתבצע לאורך מסלול אחד ויחיד. אינטגרלי מסלול הוכיחו עצמם כיעילים מאד לצורך פיתוח התמונה הפיזיקלית, ופתרון של בעיות רבות בתורת הקוונטים, וההכללה שלהם לתורת שדות היא כיום "השפה" המקובלת של הפיזיקה התאורטית.

הערת מינוח

אינטגרלי המסלול (path integrals) שהוצגו על ידי פיינמן ב-1948 ובהם דן מאמר זה, הומצאו מתוך ניסיון להבנה עמוקה יותר של מכניקת הקוונטים והם שונים בתכלית מאינטגרלי המסלול במתמטיקה. במתמטיקה אינטגרלי מסלול (או אינטגרלים מסילתיים) מתייחסים לאינטגרלים של פונקציות (סקלריות או וקטוריות) לאורך מסילות במרחב. לעומת זאת כאן האינטגרציה היא של פונקציונלים והמסילות במרחב הן למעשה משתני האינטגרציה. כשם שחשבון וריאציות הוא הכללה של פעולת הנגזרת עבור פונקציונלים, אינטגרלי מסלול, בהקשר בו נדון כאן, מהווים הכללה של פעולת האינטגרציה.

דיון איכותי

בניגוד למכניקה הקלאסית הדטרמיניסטית, תיאור הדינמיקה של מערכות קוונטיות נעשה במונחים של הסתברות. בפרט, משוואת שרדינגר מתארת את ההתפתחות בזמן של מערכת קוונטית, היא משוואה עבור אמפליטודת הסתברות או פונקציית הגל אשר הערך המוחלט שלה בריבוע נותן את ההסתברות עבור מציאת החלקיק במקום מסוים או במצב מסוים. אינטגרלי המסלול של פיינמן מבטאים את אמפליטודת ההסתברות הפענוח נכשל (שגיאת המרה. השרת ("https://wikimedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle \ \psi _{x_{0}}(x_{f},t)} למעבר מנקודת ההתחלה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x_0} לנקודת הסיום הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x_f} , לאחר זמןהפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ t} , כסכום על כל המסלולים האפשריים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x^{(j)}(\tau)} המחברים נקודות אלו, כלומר מסלולים שנקודת ההתחלה שלהם היא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x^{(j)}(\tau=0)=x_0} ונקודת הסיום הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x^{(j)}(\tau=t)=x_f} : הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \psi_{x_0}(x_f,t)=\sum_{\{x^{(j)}(\tau)\}}A_j e^{\frac{i}{\hbar} S[x^{(j)}(\tau)]}} כאן המקדם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ A_j} מייצג את המשקל (המידה) של תרומת המסלול ה-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ j} י, ואילו הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ S[x^{(j)}(\tau)]} הוא פונקציונל הפעולה הקלאסית של החלקיק הנע לאורך המסלול זה. אם, בפרט, נניח שחלקיק בעל מסה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ m} נע תחת ההשפעה של האנרגיה הפוטנציאלית הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ V(x)} , אזי פונקציונל הפעולה המתייחס למסלול כלשהו הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x(\tau)} הוא: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ S[x(\tau)]= \int_0^t d\tau L\left( \dot{x}(\tau), x(\tau) \right)} כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ L( \dot{x}, x )=\frac{1}{2}m \dot{x}^2-V(x)} הוא הלגראנז'יאן של המערכת, ו הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \dot{x}(\tau)} מציין את מהירות החלקיק או הנגזרת לפי הזמן של מיקומו. הפעולה המחולקת בקבוע פלאנק מיצגת את הפאזה שצובר החלקיק לאורך המסלול. הפרוש של נוסחה זו הוא שחלקיק קוונטי עובר מנקודה אחת לשנייה דרך כל המסלולים האפשריים בו זמנית, וההתאבכות של התרומות מכל המסלולים היא שקובעת את אמפליטודת ההסתברות (ולכן גם את ההסתברות) למעבר.

ההצגה בעזרת אינטגרלי מסלול מבהירה את הבדל בין הדינמיקה הקלאסית והקוונטית: הדינמיקה הקלאסית נקבעת מעקרון הפעולה המינימלית לפיו המסלול בו נע החלקיק הוא זה עבורו פונקציונל הפעולה מינימלי. לעומת זאת התורה הקוונטית מאפשרת תנועה של החלקיק גם במסלולים אחרים עבורם הפעולה אינה מינימלית. למרות זאת, כפי שנראה בהמשך, למסלולים הקלאסיים, בהיותם "נקודות מינימום" של פונקציונל הפעולה (ע"ע חשבון וריאציות), מעמד מיוחד, ותרומתם בגבול של אורכי גל קצרים דומיננטית.

גזירה של אמפליטודת המעבר

בחלק זה נראה באופן פורמלי כיצד מקבלים את ההצגה של אמפליטודת ההסתברות למעבר בין שתי נקודות כאינטגרל מסלול. לשם פשטות, נתבונן במערכת חד-ממדית המתוארת באמצעות ההמילטוניאן: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ H=\frac{p^2}{2m}+V(x)} כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ m} היא מסת החלקיק, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ p} התנע שלו, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x} מיקומו ו- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ V(x)} האנרגיה הפוטנציאלית שלו. אמפילטודת המעבר מנקודה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x_0} לנקודה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x_f} נתונה בביטוי: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_{x_0}(x_f,t)=\langle x_f | e^{-\frac{i}{\hbar} H t} | x_0 \rangle} כאשר השתמשנו בסימון דיראק בו המצב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle |x \rangle} מציין מצב מקום. לגודל זה נהוג גם לקרוא אופרטור ההתפתחות בזמן (או הפרופגטור) כיוון שהוא מקדם את המערכת בזמן. מכיוון שהמערכת אינה תלויה מפורשות בזמן אפשר לרשום את האופרטור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ e^{-\frac{i}{\hbar} H t}} כמכפלה של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ N} גורמים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \left(e^{-\frac{i}{\hbar} H \Delta t} \right)^N} כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ t=N\Delta t} . לכן אמפליטודת המעבר היא: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_{x_0}(x_f,t)=\langle x_f | e^{-\frac{i}{\hbar} H \Delta t}e^{-\frac{i}{\hbar} H \Delta t} \cdots e^{-\frac{i}{\hbar} H \Delta t} | x_0 \rangle }

בשלב הבא מציבים בין כל זוג גורמים במכפלה שלמעלה את אופרטור הזהות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ I} המבוטא באמצעות יחס השלמות של מצבי המקום: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ I=\int dx |x\rangle \langle x|} מכאן מקבלים

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \psi_{x_0}(x_N,t)=\int dx_1,dx_2 \cdots dx_{N-1} \langle x_N|e^{-\frac{i}{\hbar} H \Delta t}|x_{N-1} \rangle \langle x_{N-1}| \cdots |x_1\rangle\langle x_1 | e^{-\frac{i}{\hbar}H \Delta t}|x_0 \rangle} כאשר לשם נוחות ההצגה החלפנו את המציין של נקודת הסיום להיות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x_f=x_N} . אופרטור ההתפתחות בזמן עבור פרק זמן קטן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta t \to 0} הוא: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \langle x_{j+1} | e^{-\frac{i}{\hbar} H\Delta t} | x_{j} \rangle =\sqrt{\frac{m}{2 \pi i\hbar \Delta t}}e^{\frac{i}{\hbar}\left(\frac{m}{2} \frac{ (x_{j+1} - x_{j})^2}{\Delta t}-V(x_j)\right)}} ולכן אמפליטודת המעבר בגבול הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ N \to \infty} היא

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \psi_{x_0}(x_N,t)=\int dx_1,dx_2 \cdots dx_{N-1} \left(\frac{m}{2\pi i\hbar \Delta t} \right)^{\frac{N-1}{2}}e^{\frac{i}{\hbar} \sum_{j=1}^{N-1} \Delta t \left[\frac{m}{2}\left( \frac{x_{j+1}-x_j}{\Delta t} \right)^2 -V(x_j)\right]}} לנוסחה זו ניתן לתת את הפרוש הבא: אמפליטודת ההסתברות למעבר בין שתי נקודות נתונות בפרק זמן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ t} היא מכפלה של אמפליטודות הסתברות למעבר דרך סדרת נקודות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ (x_0,x_1,x_2\cdots x_N)} כאשר פרק הזמן למעבר בין כל שתי נקודות שכנות הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \Delta t} , ויש לסכם על כל נקודות הבינים האפשריות. אם נפרש את המשתנים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x_j} כדגימה של הפונקציה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x(\tau)} , המתארת את מסלול החלקיק, בזמנים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \tau_j=j \Delta t} , אזי האינטגרל שלמעלה מתאר אינטגרציה על כל המסלולים האפשריים המחברים את נקודת ההתחלה והסיום.

השלב האחרון הוא בסך הכול הסימון של האנטגרל שלעיל. בהנחה ש- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x_j} הן נקודות הדגימה של מסלול החלקיק הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x(\tau)} , ניתן להבין את הסכום באספוננט כסכום רימן אשר בגבול הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ N \to \infty} נותן את הפעולה לאורך המסלול: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \lim_{N \to \infty} \sum_{j=1}^{N-1} \Delta t\left[ \frac{m}{2} \left( \frac{x_{j+1}-x_j}{\Delta t} \right)^2 - V(x_j) \right]= \int_0^t d\tau \frac{m}{2} \dot{x}^2(\tau)-V(x(\tau))} ולכן נהוג לסמן את האינטגרל המסלולי בצורה: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \psi_{x_0}(x_f,t)= \int Dx(\tau) e^{\frac{i}{\hbar} \int_0^t d\tau L(\dot{x},x)}} כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ L(\dot{x},x)} הוא הלגראנז'יאן של המערכת. הסמל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ Dx(\tau)} אנלוגי לסמל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ dx} באינטגרציה של פונקציות, ומשמעותו שיש לסכם על כל המסלולים עם משקל (מידה) הנקבעת דרך הדיסקרטיזציה של האינטגרל לנקודות זמן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \Delta t=t/N} , בגבול הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ N\to \infty} .

מקרים פרטיים

  • חלקיק חופשי: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \psi_{x_0}(x_f,t) = G(x_f, t ; x_0, 0) = \sqrt{\frac{m}{2 \pi i \hbar t}} \exp{ \left( \frac{i m}{2 \hbar t} (x_f - x_0)^2 \right) } }
  • אוסצילטור הרמוני קוונטי: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \psi_{x_0}(x_f,t) = G(x_f, t ; x_0, 0) = \sqrt{\frac{m \omega}{2 \pi i \hbar \sin(\omega t) }} \exp{ \left( \frac{i m \omega}{2 \hbar \sin(\omega t)} \left( (x_f^2 + x_0^2) \cos(\omega t) - 2x_f x_0 \right) \right) } }

הכללות

אינטגרלי מסלול, שהוצגו כאן עבור חלקיק יחיד בממד אחד, ניתנים להכללה בכמה אופנים:

  • חלקיק יחיד הנע בממד גבוה יותר: במקרה יש ההכללה נעשית על ידי מעבר מהקואודינטה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x} לוקטור הקואורדינטנות בעל ממד גבוה יותר, בפרט בשלושה ממדים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \vec{r}=(x,y,z)} .
  • חלקיק הנע תחת השפעה של שדה מגנטי: ההכללה במקרה זה לוקחת בחשבון את ההתנהגות הלא-מקומית הנובעת מאפקט אהרונוב-בוהם. כמו כן אופן הבחירה של משקלות המסלולים (המידה) שונה מעט (ע"ע חשבון איטו).
  • מערכות מרובות חלקיקים (בוזונים או פרמיונים): זוהי ההכללה החשובה ביותר של אינטגרלי מסלול כיוון שהיא מאפשרת לדון במערכות פיזיקליות כלליות כמו מתכות או אטומים מרובי אלקטרונים. (ע"ע תורת שדות).
  • תיאור מערכות בשיווי משקל תרמודינמי: מתקבל על ידי המשכה אנליטית של אנטגרלי המסלול לזמן דמיוני.

שימושים

גזירת עקרון הפעולה המינימלית

המכניקה הקוונטית מהווה תיאור מיקרוסקופי מדויק של חוקי הפיזיקה, ולכן אפשר לצפות שחוקי המכניקה הקלאסית מתקבלים כגבול של התורה הקוונטית, כשם שחוקי ניוטון מתקבלים מתורת היחסות הפרטית בגבול של מהירויות נמוכות ממהירות האור. במקרה דנן, המכניקה הקלאסית מתקבלת מהגבול בו קבוע פלאנק שואף לאפס הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \hbar \to 0} . כדי לראות שגבול זה מזדהה עם עקרון הפעולה המינימלית (ממנו נגזרים חוקי המכניקה הקלאסית) יש לזהות מהם המסלולים בעלי התרומה הגדולה ביותר לאינטגרל המסלולי המתאר את אמפליטודת המעבר בין שני מצבים. כפי שאפשר לראות אמפליטודת המעבר בעלת סינגולריות עיקרית בגבול הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \hbar \to 0} . משמעות הדבר, כאן, שבגבול הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \hbar \to 0} שינוי קטן בצורת המסלול משנה את הפאזה שלו באופן משמעותי, ולכן הסכום על המסלולים, בדרך כלל, יתמצע לאפס בדומה לאינטגרציה של פונקציה מחזורית שהממוצע שלה אפס. יוצאים מן הכלל הם המסלולים אשר שינויים קטנים שלהם אינם משנים את הפאזה באופן משמעותי. מסלולים אלו הם המסלולים עבורם: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ S[x(\tau)+\delta x(\tau)]-S[x(\tau)] =0} כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ S[x(\tau)]= \int d\tau L(\dot{x},x)} הוא פונקציונל הפעולה, ו- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \delta x\left( \tau\right)} מציינת וריאציה קטנה של המסלול הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x(\tau)} , והאפס באגף ימין הוא עד כדי אבר מסדר שני בוריאציה (ע"ע חשבון וריאציות). המסלולים היחידים שתורמים בגבול הקלאסי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \hbar \to 0} הם, אם כן, אלו שפעולתם מינימלית, ובכך הוכחנו את עקרון הפעולה המינימלית.

הקשר בין אינטגרלי מסלול ומכניקה סטטיסטית

מתברר שאינטגרלי המסלול של פיינמן, ובפרט פרופאגאטוריי פיינמאן, הם אנלוגיים לפונקציית החלוקה של מערכת קלאסית (בעלת מימד אחד גבוה יותר מהמימד של המערכת הקוונטית). אם אנו מעוניינים לעקוב אחרי דמיון זה, עלינו לבצע אינטגרל בזמן מדומה. לקשר זה משמעות גדולה כיוון שהוא מספק נקודת מבט נוספת על מערכות קוונטיות. נדגים אותו באמצעות דוגמה: נתבונן במיתר המתוח בין שתי נקודות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ z_0} ו-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ z_f} ונניח שהוא יכול לבצע תנודות רוחביות בכיוון ציר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x} הניצב לישר שלאורכו מתוח המיתר כאשר הוא במנוחה. נוכל לתאר את צורת המיתר בעזרת הפונקציה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x(z)} . נניח כעת שהמיתר נמצא תחת השפעה של פוטנציאל כך שהאנרגיה של אלמנט אורך אינפינטיסימלי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ dz} היא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ V(x(z))dz} . בנוסף לכך אם מתיחות המיתר היא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \mu} אז האנרגיה הכרוכה בעיוות המיתר ממצב שיווי המשקל שלו לצורה כלשהי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x(z)} נתונה על ידי הפונקציונל: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ E[x(z)]=\int_{z_0}^{z_f} dz \left[ \frac{\mu}{2}\left( \frac{dx(z)}{dz}\right)^2 +V(x(z)) \right]} פונקציית החלוקה של מערכת זו, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ Z} , מוגדרת להיות הסכום על כל מצבי המיתר האפשריים כאשר המשקל של מצב בעל אנרגיה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ E} הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ e^{-\frac{E}{k_B T}}} . כאן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ k_B} הוא קבוע בולצמן ו- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T} היא הטמפרטורה, ולכן: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ Z= \int Dx(z) e^{-\frac{1}{k_B T} \int dz \left[\frac{\mu}{2}\left( \frac{dx(z)}{dz}\right)^2 +V(x(z)) \right]}} אמפליטודת המעבר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \psi_{x_0}(x_f,t)} עבור זמן מדומה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ t=-it'} נתונה באינטגרל המסלולי: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \psi_{x_0}(x_f, -it') = \int Dx(i\tau) e^{-\frac{1}{\hbar} \int_0^{t'} d \tau \left[ \frac{m}{2} \left( \frac{dx(i\tau)}{d\tau} \right)^2 + V(x(i \tau)) \right]}} המבנה של שני הביטויים שקיבלנו, פונקציית החלוקה של מיתר קלאסי, ואמפליטודת המעבר בזמן מדומה, זהה, ומכאן נובעת האנלוגיה בין שתי הבעיות. בטבלה הבאה מסוכמת אנלוגיה זו בין הבעיות:

האנלוגיה בין פונקציית חלוקה ואמפליטודת מעבר
פונקציית חלוקה אמפליטודת מעבר
טמפרטורה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ k_B T} קבוע פלאנק הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \hbar}
אורך המיתר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ z_f-z_0} זמן המעבר המדומה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ -it'}
מתיחות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \mu} מסה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ m}
צורת המיתר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x(z)} מיקום החלקיק כפונקציה של הזמן המדומה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x(-i\tau)}

אינטגרלי המסלול של פיינמן, האנלוגייה שלהם לבעיות בפיזיקה סטטיסטית, כמו גם אינטגרציה בזמן מדומה, אינן שעשוע מתמטי ותו לא. לאינטגרלי המסלול של פיינמן אפליקציות רבות ומגוונות בתחומים כגון מחקר של פולימרים, של DNA, של תנועה בראונית ואף של תנודות הבורסה. אינטגרלי המסלול של פיינמן נותנים אף רקע להבנה אינטואיטיבית של ההבדלים בין הסטטיסטיקה הפרמיונית והבוזונית.

קישורים חיצוניים

ויקישיתוף מדיה וקבצים בנושא אינטגרלי מסלול בוויקישיתוף

אינטגרלי_מסלול22092460Q898323