קבועי לאמה

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

קבועי לאמה (Lamé) הם קבועים המחושבים מתכונות החומר והמשמשים בהצגת הקשרים בין מאמצים לבין מעוותים של חומרים אלסטיים לינאריים. הקבועים המשמשים בתורת האלסטיות נקראים על שמו של המתמטיקאי גבריאל לאמה, Gabriel Lamé שחי בצרפת מיולי 1795 עד מאי 1870, השימוש בקבועי לאמה היא דרך נוספת להצגת התכונות האלסטיות של החומר ושל חוק הוק. השימוש בדרכים השונות להצגת התכונות האלסטיות של החומר קשור להתפתחות ההיסטורית של תורת החוזק ושל תורת האלסטיות.

הקבועים של לאמה

הקבוע הראשון של לאמה

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda =\frac{E \nu}{(1+\nu) (1-2\nu)}}

הקבוע השני של לאמה

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu = G=\frac{E}{2(1+\nu)}}


כאשר:

  • הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ E} - מודול האלסטיות
  • הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ G} - מודול הגזירה
  • הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \nu} - מקדם פואסון
הקבוע השני של לאמה מוכר גם כמודול הגזירה.
הקבוע הראשון של לאמה והקבוע השני של לאמה, בדומה למודול האלסטיות, הם גדלים בעלי ממדים של מאמץ, כלומר, כח ליחידת שטח, למשל ג'יגה פסקל, ניוטון למטר מרובע או ליברה לאינץ' מרובע.

דוגמאות ושימושים

הקשר בין מאמץ לבין מעוות

את הקשר בין מאמצים לבין מעוותים בחומרים אלסטיים לינאריים מציגים בדרך כלל באמצעות חוק הוק, ישירות באמצעות מודול האלסטיות ובאמצעות מקדם פואסון. קבועי לאמה משמשים בהצגת קשרים בין מאמצים לבין מעוותים בחומרים אלסטיים לינאריים בדרך נוספת. לדוגמה:

נסמן את סכום המעוותים היחסיים הראשיים:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle e =\ \epsilon_{x}+ \epsilon_{y}+ \epsilon_{z}}

ואת סכום המאמצים בכוונים הראשיים:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle S =\ \sigma_{x}+ \sigma_{y}+ \sigma_{z}}

מתקיים הקשר בין ההתפשטות הנפחית לבין סכום המאמצים הראשיים:

בלחץ הידרוסטטי אחיד הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \sigma_x = \sigma_y = \sigma_z = - p} :

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle e= -\frac {3(1-2\nu)}{E}p}

הביטוי הזה מציג את הקשר בין יחידת ההתפשטות הנפחית e לבין הלחץ ההדרוסטטי הפועל על הקובייה.

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{E}{3 (1-2\nu)}}

הוא ביטוי הנקרא מודול ההתפשטות הנפחית ובאנגלית Bulk Modulus.

חוק הוק התלת ממדי מציג את המעוות כתלות בשלושת המאמצים הראשיים וכתלות בתכונות החומר - מודול האלסטיות ומקדם פואסון:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_{x} = \frac{\sigma_{x}}{E} - \nu \frac{\sigma_{y}}{E} - \nu \frac{\sigma_{z}}{E} = \frac{1}{E} [\sigma_{x} - \nu (\sigma_{y} + \sigma_{z})] }
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_{y} = \frac{\sigma_{y}}{E} - \nu \frac{\sigma_{x}}{E} - \nu \frac{\sigma_{z}}{E} = \frac{1}{E} [\sigma_{y} - \nu (\sigma_{x} + \sigma_{z})] }
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_{z} = \frac{\sigma_{z}}{E} - \nu \frac{\sigma_{x}}{E} - \nu \frac{\sigma_{y}}{E} = \frac{1}{E} [\sigma_{z} - \nu (\sigma_{x} + \sigma_{y})] }

פותרים את המשוואות עבור המאמצים הראשיים בתנאי של לחץ הדרוסטטי אחיד ששעורו p-

לכל אחד מהכוונים i = x,y,z מקבלים ביטוי הקושר בין המאמץ לבין המעוות:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_{i} =\frac{E \nu}{(1+\nu) (1-2\nu)}e + \frac{E}{(1+\nu)}\epsilon_{i} }

את הקשר בין המאמצים לבין המעוותים בתנאי של לחץ הידרוסטטי אחיד אפשר להציג בצורה פשוטה תוך שימוש בקבועי לאמה:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_{x}=\ \lambda e + 2 \mu \epsilon_{x}}
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_{z}=\ \lambda e + 2 \mu \epsilon_{z}}

כאשר:

  • הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \sigma_{i}} - מאמץ (ניצב לשטח החתח) בכוון הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ i}
  • הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \epsilon_{i}} - מעוות בכוון הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ i}

הקשר בין מאמץ הגזירה למעוות הגזירה

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \tau_{xy} = \mu \epsilon_{xy}}
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \tau_{xz} = \mu \epsilon_{xz}}
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \tau_{yz} = \mu \epsilon_{yz}}

כאשר:

  • הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \tau_{ij}} - הוא מאמץ גזירה
  • - הוא מעוות גזירה
  • הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \mu} - הוא הקבוע השני של לאמה המשמש כאן כמודול הגזירה בדומה למודול האלסטיות במאמץ מתיחה לפי חוק הוק.

ערכים אפשריים למקדם פואסון

נתבונן בקבוע הראשון של לאמה. עבור הערכים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \nu=-1, \nu=0.5} נקבל:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda =\frac{E \nu}{(1+\nu) (1-2\nu)} \longrightarrow \infty}
  • הערכים שמקדם פואסון הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \nu} יכול לקבל הם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ -1<\nu<0.5} .
באופן מעשי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 0<\nu<0.5} . אבל ישנם פולימרים בעלי מקדם פואסון שלילי (מצב בו החומר מתרחב במתיחה). חומרים כאלו נקראים Auxetic materials, ומבנים בעלי התכונה הזאת נקראים Chiral Structures. מקדם פואסון גדול מ-0.5 אינו אפשרי כי במקרה זה נקבל נפח שלילי.

מהירות התפשטות הגל במוט

מהירות הגל האורכית במוט נתונה על ידי הביטוי:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ C_{(\lambda, \mu, \rho)}= \sqrt \frac{\lambda + 2\mu}{\rho}}

כאשר:

  • הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ C_{(\lambda, \mu, \rho)}} - היא מהירות התפשטות הגל האורכית במוט
  • הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \lambda} - הוא הקבוע הראשון של לאמה
  • - הוא הקבוע השני של לאמה
  • הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \rho} - היא צפיפות המסה של חומר המוט (מסה ליחידת נפח)

סיכום מילולי

  • המאמצים בשלושת הכוונים הראשיים מושפעים בצורה אחידה על ידי ביטוי שינוי הנפח הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \lambda e} ובצורה ייחודית על ידי ביטוי המעוות בכוון המאמץ וקשיחות הגוף הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \mu\epsilon_{ij}} .
  • כל שינוי בנפח הגוף מביא בהכרח למאמצים בשלושת הכוונים הראשיים.
  • המאמצים ומאמצי הגזירה מושפעים על ידי ביטויים זהים המתייחסים למודולי הקשיחות ולמעוותים המתאימים. המאמצים ומאמצי הגזירה מתייחסים למעוות אבל המאמצים מתייחסים גם לשינוי הנפח.
  • המאמצים גורמים לשינוי בנפח ומאמצי הגזירה גורמים לשינוי הצורה.



הקשר בין מודולי האלסטיות בחומרים אחידים בעלי תכונות זהות בכל הכוונים

מודול יאנג (הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ E} ) | מודול הגזירה (הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \mu} ) | מקדם פואסון (הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \nu} ) | הקבוע הראשון של לאמה (הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \lambda} ) | מודול הנפח (הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ K} )
כל אחד מקבועי האלסטיות יכול להיות מוגדר באמצעות אחד מזוגות הקבועים האחרים.

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\lambda,\,\mu)} הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (K,\,\lambda)} הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (K,\,\mu)} הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\lambda,\,\nu)} הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\mu,\,\nu)} הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (E,\,\nu)} הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (K,\, \nu)} הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (K,\,E)}
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle =K \, }
מודול הנפח
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda+ \frac{2\mu}{3}} הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{E\mu}{3(3\mu-E)}} / / הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda\frac{1+\nu}{3\nu}} הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2\mu(1+\nu)}{3(1-2\nu)}} הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{E}{3(1-2\nu)}} / /
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle =E \, }
מודול יאנג
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu\frac{3\lambda + 2\mu}{\lambda + \mu}} / הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 9K\frac{K-\lambda}{3K-\lambda}} הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{9K\mu}{3K+\mu}} הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\lambda(1+\nu)(1-2\nu)}{\nu}} הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\mu(1+\nu)\,} / הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3K(1-2\nu)\,} /
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\lambda \,}
הקבוע של לאמה
/ הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu\frac{E-2\mu}{3\mu-E}} / הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle K-\frac{2\mu}{3}} / הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2 \mu \nu}{1-2\nu}} הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{E\nu}{(1+\nu)(1-2\nu)}} הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3K\nu}{1+\nu}} הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3K(3K-E)}{9K-E}}
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\mu \, }
מודול הגזירה
/ / הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3\frac{K-\lambda}{2}} / הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda\frac{1-2\nu}{2\nu}} / הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{E}{2+2\nu}} הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3K\frac{1-2\nu}{2+2\nu}} הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3KE}{9K-E}}

מקדם פואסון
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\lambda}{2(\lambda + \mu)}} הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{E}{2\mu}-1} הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\lambda}{3K-\lambda}} הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3K-2\mu}{2(3K+\mu)}} / / / / הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3K-E}{6K}}

לקריאה נוספת

  • G. Mavko, T. Mukerji, J. Dvorkin. The Rock Physics Handbook. Cambridge University Press, 2003, מסת"ב 0882754203
  • Timoshenko S.P, Strength of Materials, 3rd edition, Krieger Publishing Company, 1976.
  • S.P. Timoshenkoo & J.N. Goodier Theory of Elasticity, 3rd edition, International Student Edition, McGraw-Hill 1970. 1991.
  • I.S. Sokolnikoff, Mathematical theory of elasticity, McGraw-Hill (1956), Translated from Russian

קישורים חיצוניים