מקדם פואסון
מקדם פואסון או יחס פואסון של חומר הוא גודל פיזיקלי חסר ממד המודד את עמידות החומר לעיוות, שערכו נע בדרך כלל בין 0.25 לבין 0.5. מסומן באות היוונית נוּ.
לפלדות הערך של מקדם פואסון הוא בסביבות 0.3. מקדם פואסון כמו גם מודול האלסטיות של החומר משתנים עם שינוי הטמפרטורה של החומר.
מקדם פואסון מציג את המעוות הרוחבי כתוצאה מהמעוות האורכי. זאת לעומת מודול האלסטיות שהוא ביטוי לקפיציות של החומר. כאשר מבצעים מבחן מתיחה או מבחן לחיצה של דגם החומר, הדגם מתארך או מתקצר בהתאם למתיחה או הלחיצה. בחתך הרוחב של הדגם מתרחש מעוות בכוון הפוך ובשיעור שבין 25% עד 50% מהמעוות האורכי. היחס בין המעוות האורכי לבין המעוות הרוחבי הוא יחס פואסון או מקדם פואסון.
מקדם פואסון
- כאשר:
- - הוא יחס פואסון או מקדם פואסון
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varepsilon_x} - הוא העיבור הצירי
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varepsilon_y} - הוא העיבור הרוחבי
במוט המועמס למתיחה או ללחיצה, המעוות הוא ההתארכות היחסית:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\varepsilon}= \frac{\Delta L}{L}}
- L - אורך המוט
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\Delta L}} - השינוי באורך
מצב מאמצים מרחבי ומצב מעוותים מרחבי
מאמץ מתיחה בכוון x גורם למתיחת המוט בכוון x, ולהתכווצות המוט בכיוונים הניצבים y,z בשעור המתקבל מהמכפלה של המאמץ בכוון x במקדם פואסון. כך גם בכוונים y,z. חוק הוק המוכלל למצב מאמצים תלת-ממדי, מתקבל משלוש מתיחות חד-ציריות לכל אחד מהכיוונים ושימוש בעקרון הסופרפוזיציה:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_{x} = \frac{\sigma_{x}}{E} - \nu \frac{\sigma_{y}}{E} - \nu \frac{\sigma_{z}}{E} = \frac{1}{E} [\sigma_{x} - \nu (\sigma_{y} + \sigma_{z})] }
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_{y} = \frac{\sigma_{y}}{E} - \nu \frac{\sigma_{x}}{E} - \nu \frac{\sigma_{z}}{E} = \frac{1}{E} [\sigma_{y} - \nu (\sigma_{x} + \sigma_{z})] }
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_{z} = \frac{\sigma_{z}}{E} - \nu \frac{\sigma_{x}}{E} - \nu \frac{\sigma_{y}}{E} = \frac{1}{E} [\sigma_{z} - \nu (\sigma_{x} + \sigma_{y})] }
כאשר:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varepsilon\ _x , \varepsilon\ _y , \varepsilon\ _z } הם מעוותים בכוונים המסומנים x,y,z
- הוא מודול האלסטיות של החומר
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma\ _x , \sigma\ _y , \sigma\ _z } הם מאמצים בכוונים המסומנים x,y,z
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \nu } הוא מקדם פואסון או יחס פואסון של החומר
מודול הגזירה
הקשר בין מודול האלסטיות לבין מודול הגזירה נתון על ידי הביטוי הכולל בתוכו את מקדם פואסון
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ G=\frac{E}{2(1+\nu)}}
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ E} - מודול האלסטיות
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ G} - מודול הגזירה
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \nu} - מקדם פואסון
שינוי נפח
שינוי הנפח היחסי כתוצאה ממתיחת החלק הוא ביטוי התלוי בשינוי האורך היחסי ובמקדם פואסון. כאשר המעוותים קטנים, מתקיים:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac {\Delta V} {V} = (1-2\nu)\frac {\Delta L} {L}}
כאשר:
- - הוא נפח החומר
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \Delta V } - הוא השינוי בנפח החלק
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ L } - הוא האורך הראשוני של החלק לפני המעוות
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \Delta L } - הוא השינוי באורך החלק כתוצאה מהמעוות
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \Delta L = L_{old} - L_{new}}
שינוי רוחב
כאשר מוט בעובי או בקוטר d ובאורך L נתון למתיחה כך שהאורך שלו משתנה בשעור ΔL אזי הרוחב או הקוטר של המוט ישתנה בערך השלילי הנתון על ידי הביטוי המקורב להלן, ביטוי הנותן תוצאות טובות כאשר המעוותים ושינויי האורך והרוחב קטנים. המשמעות של הסימן השלילי היא שכאשר המוט מתארך, הרוחב או הקוטר שלו קטנים.
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta d = - d \cdot \nu {{\Delta L} \over L}}
הביטוי המדויק המתאים למעוותים גדולים הוא:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta d = - d \cdot \left( 1 - {\left( 1 + {{\Delta L} \over L} \right)}^{-\nu} \right)}
כאשר:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ d } - הוא הקוטר או העובי הראשוני של החומר
- - הוא השינוי בקוטר החומר או השינוי בעובי
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \nu } - הוא יחס פואסון או מקדם פואסון
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ L } - הוא האורך הראשוני של החלק לפני המתיחה או הלחיצה
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \Delta L } - הוא השינוי באורך
חומרים אורטוטרופים
בחומרים שאינם אחידים בכל הכוונים כמו למשל קורת עץ לה תכונות שונות לאורך הסיבים ובניצב לסיבים למקדם פואסון יהיה ערך מספרי שונה בכל כוון. נשמר היחס בין מקדם פואסון לבין מודול האלסטיות:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\nu_{yx}}{E_y} = \frac{\nu_{xy}}{E_x} \qquad \frac{\nu_{zx}}{E_z} = \frac{\nu_{xz}}{E_x} \qquad \frac{\nu_{yz}}{E_y} = \frac{\nu_{zy}}{E_z} \qquad }
כאשר:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ E_i} - הוא מודול האלסטיות בכוון i
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \nu_{jk}} - הוא מקדם פואסון במישור jk
ערכים אפשריים למקדם פואסון
נתבונן בקבוע הראשון של לאמה. עבור הערכים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \nu=-1, \nu=0.5} נקבל:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda =\frac{E \nu}{(1+\nu) (1-2\nu)} \longrightarrow \infty}
- הערכים שמקדם פואסון יכול לקבל הם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ -1<\nu<0.5} .
- באופן מעשי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 0<\nu<0.5} . אבל ישנם פולימרים בעלי מקדם פואסון שלילי (מצב בו החומר מתרחב במתיחה). חומרים כאלו נקראים Auxetic materials, ומבנים בעלי התכונה הזאת נקראים Chiral Structures. מקדם פואסון גדול מ-0.5 אינו אפשרי עבור חומרים איזוטרופים.
ערכים של מקדם פואסון לחומרים שונים
חומר | מקדם פואסון |
---|---|
אלומיניום | 0,33 |
בטון | 0,20 |
יצקת ברזל | 0,21-0,26 |
זכוכית | 0,24 |
חרסית | 0,30-0,45 |
נחושת | 0,33 |
שעם | 0,00 |
מגנזיום | 0,35 |
פלב"ם | 0,30-0,31 |
גומי | 0,50 |
פלדה | 0,27-0,30 |
טיטניום | 0,34 |
חול | 0,20-0,45 |
הקשר בין מודולי האלסטיות בחומרים אחידים בעלי תכונות זהות בכל הכוונים | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
מודול יאנג (הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ E}
) | מודול הגזירה (הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \mu}
) | מקדם פואסון (הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \nu}
) | הקבוע הראשון של לאמה (הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \lambda}
) | מודול הנפח (הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ K}
)
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
לקריאה נוספת
- G. Mavko, T. Mukerji, J. Dvorkin. The Rock Physics Handbook. Cambridge University Press, 2003, מסת"ב 0882754203
- Timoshenko S.P, Strength of Materials, 3rd edition, Krieger Publishing Company, 1976.
- S.P. Timoshenkoo & J.N. Goodier Theory of Elasticity, 3rd edition, International Student Edition, McGraw-Hill 1970. 1991.
- Sybil P. Parker Editor in Chieh. McGraw-Hill Encyclopedia of Engineering, McGraw Hill Book Company 1983, מסת"ב 0-0704-5486-8
- Shames I.H., Cozzarelli F.A., Elastic and inelastic stress analysis, Prentice-Hall, 1991, מסת"ב 1560326867
קישורים חיצוניים
מאמץ (הנדסה) | ||
---|---|---|
מאמצים | מאמץ • מאמץ גזירה • מאמץ כפיפה • מאמץ לחיצה • מאמץ מתיחה • מאמץ פיתול • מאמץ קריסה • עייפות החומר | |
נושאי עזר | מומנט כפיפה • מומנט כוח • אלסטיות • מעוות • חוק הוק • עקומת מאמץ-עיבור • כניעה (הנדסה) | |
מודולי האלסטיות | מודול האלסטיות • מודול הגזירה • מקדם פואסון • קבועי לאמה • מודול הנפח | |
שטחים ונפחים | שטח • מומנט התמד • מומנט ההתמד של השטח • מומנט התמד פולרי של השטח • משפט שטיינר-הויגנס • טנזור התמד • טבלת טנזורי התמד • מומנט ראשון של שטח | |
נושאים משלימים | חוזק חומרים • טנזור מאמצים • מאמצים ראשיים • מעגל מור • היפותזות חוזק • שיטות אנרגיה • חוקי קסטיליאנו |
30142583מקדם פואסון