פונקציית מדרגות

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש
דוגמה לפונקציית מדרגות (הגרף האדום)

פונקציית מדרגות היא פונקציה על המספרים הממשיים שניתן להציגה כצירוף ליניארי סופי של פונקציות מציינות של קטעים. בניסוח פחות פורמלי, פונקציית מדרגות היא פונקציה קבועה למקוטעין, על גבי מספר סופי של קטעים. הפונקציה קרויה פונקציית מדרגות משום שהגרף של הגרסה המונוטונית שלה נראה כמדרגות במבט מהצד.

הגדרה

פונקציה קרויה פונקציית מדרגות אם ניתן לכתוב אותה בצורה:

לכל מספר ממשי

כאשר ו- הם מספרים ממשיים, הם קטעים, היא הפונקציה המציינת של :

בהגדרה זו ניתן להניח שהקטעים מקיימים שתי תכונות:

  • הקטעים הם קבוצות זרות - מתקיים לכל .
  • האיחוד של הקטעים הוא הישר הממשי כולו: .

אם לא מתקיימות הנחות אלה, ניתן לבחור אוסף אחר של קטעים שיקיים אותן. דוגמה: את הפונקציה

ניתן לכתוב כ:

.

דוגמאות

פונקציית מדרגה

פונקציית הערך השלם אינה פונקציית מדרגות, משום שיש בה מספר אינסופי של קטעים.

תכונות

  • סכום ומכפלה של שתי פונקציות מדרגות גם הוא פונקציית מדרגות. מכפלה של פונקציית מדרגות במספר גם היא פונקציית מדרגות. בהתאם לכך, האוסף של פונקציות המדרגות הוא אלגברה לא אסוציאטיבית מעל הממשיים.
  • לפונקציית מדרגות יש מספר סופי של ערכים. אם הקטעים בדוגמה לעיל הם זרים, ואיחודם הוא הישר הממשי, אזי לכל .
  • אינטגרל לבג של פונקציית מדרגות על קטע סופי הוא כאשר הוא האורך של קטע , ולכל אחד מהקטעים יש אורך סופי.

ראו גם

קישורים חיצוניים

ויקישיתוף מדיה וקבצים בנושא פונקציית מדרגות בוויקישיתוף
הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0

23770969פונקציית מדרגות