משפט גלפונד-שניידר

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

במתמטיקה, משפט גלפונד-שניידר הוא משפט הקובע תחת אילו תנאים העלאת מספר אלגברי בחזקת מספר אלגברי נותנת מספר טרנסצנדנטי. המשפט עונה בחיוב על הבעיה השביעית של הילברט. המשפט הוכח על ידי המתמטיקאי הרוסי אלכסנדר גלפונד בשנת 1934 ובאופן בלתי תלוי על ידי המתמטיקאי הגרמני תאודור שניידר בשנת 1935.

המשפט קובע כי אם מספרים אלגבריים עבורם ו- אי-רציונלי, אז טרנסצנדנטי.

תנאי המשפט

השלכות

משפט גלפונד-שניידר משמש להוכחת הטרנסצנדנטיות של קבוצה רחבה של מספרים. דוגמאות מפורסמות כוללות את:

  • קבוע גלפונד-שניידר והשורש שלו .
  • קבוע גלפונד, (לפי זהות אוילר).
  • (לפי זהות אוילר).
  • לפי המשפט אם אלגבריים אז טרנסצנדנטי או רציונלי (אחרת דוגמה נגדית למשפט). למשל אינו רציונלי (נובע מכך ש-2 ו-3 ראשוניים), ולכן טרנסצנדנטי.

ראו גם

קישורים חיצוניים

  • Aleksandr Gelfond (1934). "Sur le septième Problème de Hilbert". Bulletin de l'Académie des Sciences de l'URSS. Classe des sciences mathématiques et na. VII (4): 623–634.