משוואה ממעלה שישית
משוואה ממעלה שישית היא פולינום ממעלה שישית באגף ואחד ואפס באגף השני. ליתר דיוק, המשוואה מוצגת באופן הבא:
כאשר ≠ והמקדמים יכולים להיות מספרים שלמים, מספרים רציונליים, מספרים ממשיים, מספרי מרוכבים או, באופן כללי יותר, בני כל שדה.
פונקציה ממעלה שישית היא פונקציה המוגדרת על ידי פולינום ממעלה שישית. משום שיש להן מעלה זוגית, היא דומה מבחינה גרפית לפונקציה ממעלה רביעית. עם זאת, לפונקציה ממעלה שישית עשויים להיות נקודות קיצון מקומיות נוספות. נגזרת של פונקציה ממעלה שישית היא פונקציה ממעלה חמישית.
מאחר שפונקציה ממעלה שישית על ידי פולינום ממעלה זוגית, יש לה את אותו הגבול כאשר הארגומנט הולך לאינסוף חיובי או שלילי. אם המקדם המוביל הוא חיובי, אז הפונקציה עולה לפלוס אינסוף משני הצדדים ולכן לפונקציה יש מינימום גלובלי. כמו כן, אם שלילי, הפונקציה יורדת עד מינוס אינסוף משני הצדדים ולכן יש לה מקסימום גלובלי.
פתרון
כמה משוואות ממעלה שישית, כמו ניתנות לפתרון באמצעות רדיקלים, אבל משוואות אחרות לא ניתנות לפתרון. בשנת 1824 הוכיח נילס הנריק אבל כי אין פתרון כללי באמצעות רדיקלים למשוואה ממעלה חמישית ומעלה. שנים ספורות לאחר מכן מצא אווריסט גלואה אפיון מלא של כל המשוואות הפולינומיות שניתנות לפתרון באמצעות רדיקלים: אלו המשוואות שחבורת גלואה המתאימה להן היא חבורה פתירה. מחקרים אלו הולידו את תורת גלואה ואת תורת החבורות. גלואה פיתח טכניקות לקביעה האם משוואה נתונה ניתנת לפתרון על ידי רדיקלים[1]. מתורת גלואה נובע כי משוואה ממעלה שישית ניתנת לפתרון במונחים של רדיקלים, אם ורק אם חבורת הגלואה שלה נמצאת בחבורה מסדר 48, המייצבת חלוקה של קבוצת השורשים לשלוש תת-קבוצות של שני שורשים, או חבורה מסדר 72 המייצבת חלוקה של מערכת השורשים לשתי תת-קבוצות של שלושה שורשים. קיימות נוסחאות כדי לבדוק כל מקרה, ולחשב את השורשים, במקרים שהמשוואה ניתנת לפתרון[2].
משוואה כללית ממעלה שישית ניתנת לפתרון במונחים של פונקציות קמפה דה פרייט. ישנן משוואות ממעלה שישית הניתנות לפתרון על ידי פונקציה היפרגאומטרית כללית במשתנה אחד, באמצעות הגישה של פליקס קליין לפתרון משוואה ממעלה חמישית.
דוגמאות
העיקול של וואט, שעלה עם העבודה הראשונית על מנוע הקיטור, הוא משוואה ממעלה שישית עם שני משתנים.
אחת השיטות לפתרון משוואה מעוקבת כוללת שינוי במשתנים כדי להשיג משוואה ממעלה שישית, שמשתניה ממעלות 6, 3 ו-0 בלבד. בדרך זו, ניתן לפתור אותה כמו משוואה ריבועית.
ראו גם
הערות שוליים
- ^ אריק ווייסטיין, Sextic Equation, באתר MathWorld (באנגלית)
- ^ T. R. Hagedorn, General formulas for solving solvable sextic equations, J. Algebra 233 (2000), 704-757
שגיאות פרמטריות בתבנית:מיון ויקיפדיה
שימוש בפרמטרים מיושנים [ דרגה ] משוואה ממעלה שישית25900684