חבורה אלגברית פשוטה למחצה
קפיצה לניווט
קפיצה לחיפוש
במתמטיקה ובתורת החבורת, חבורה אלגברית פשוטה למחצה היא חבורה אלגברית שאין לה תת-חבורה נורמלית פתירה (לא טריוויאלית). בהקשרים רבים, הביטוי "חבורה פשוטה למחצה" כולל גם דרישה שהחבורה תהיה קשירה.
כל חבורה פשוטה למחצה היא ליניארית. כל חבורה פשוטה למחצה היא צורה של חבורה שאיזוגנית למכפלה של חבורות אלגבריות פשוטות.
אלגברת הלי של חבורה אלגברית פשוטה למחצה היא אלגברת לי פשוטה למחצה. עבור כל אלגברת לי פשוטה למחצה קיים מספר סופי של חבורות אלגבריות פשוטות למחצה שאלגברת הלי שלהם היא . בידיוק אחת מהן פשוטת קשר ובידיק אחר מהן חסרת מרכז.
עץ מיון של חבורות אלגבריות | |
---|---|
|
לקריאה נוספת
- Springer, Tonny A. (1998) [1981], Linear Algebraic Groups (2nd ed.), New York: Birkhäuser, ISBN 0-8176-4021-5, MR 1642713
- Borel, Armand (1991) [1969], Linear Algebraic Groups (2nd ed.), New York: Springer-Verlag, ISBN 0-387-97370-2, MR 1102012
- Humphreys, James E. (1975), Linear Algebraic Groups, Springer, ISBN 0-387-90108-6, MR 0396773
- Conrad, Brian (2014), "Reductive group schemes" (PDF), Autour des schémas en groupes, vol. 1, Paris: Société Mathématique de France, pp. 93–444, ISBN 978-2-85629-794-0, MR 3309122
קישורים חיצוניים
- De Medts, Tom (2019), Linear Algebraic Groups (course notes) (PDF), Ghent University
הערות שוליים
- ^ כאן אנו מתייחסים למוסכמה המרחיבה, לפיה אין דרישה שהחבורה תהיה קשירה. עם זאת אנו דורשים שהחבורה תהיה קומוטטיבית, דרישה זו נובעת מהפרויקיטיביות/שלמות עבור חבורות קשירות, אך לא במקרה הכללי.
- ^ 2.0 2.1 2.2 כאן אנו מתייחסים למוסכמה המרחיבה, לפיה אין דרישה שהחבורה תהיה קשירה.
- ^ למושג "חבורה קלאסית" יש מספר משמעויות מקובלות. כל המשפחות שמופעות בדיאגרמה כאן תחת "חבורה קלאסית" נחשבות לכאלה על פי כל המשמעוית המוקובלות
- ^ כאן אנו מתייחסים למוסכמה המרחיבה, לפיה אין דרישה שהחבורה תהיה קשירה. עם זאת, מעל שדה ממציין 0, חבורה אוניפוטנטית היא תמיד קשירה (ופשוטת קשר), גם אם לא דרשים זאת בהגדרה.
- ^ לעיתים מושג זה נקרא "חבורה פשוטה".
- ^ כאן אנו משתמשים במוסכמה המצמצמת, שדורשת מחבורה פשוטה להיות חסרת מרכז. המושג ללא דרישה זו נקרא כאן "חבורה כמעט פשוטה".
39032357חבורה אלגברית פשוטה למחצה