התפלגות רב-נורמלית

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש
התפלגות רב-נורמלית
פונקציית צפיפות ההסתברות
מאפיינים
פרמטרים μRk פרמטר מרכז
ΣRk × k מטריצת שונות משותפת מטריצה חיובית
תומך xRk
פונקציית צפיפות הסתברות
(pdf)
תוחלת
ערך שכיח
שונות
אנטרופיה
פונקציה יוצרת מומנטים
(mgf)
פונקציה אופיינית

בתורת ההסתברות, התפלגות רב-נורמלית, או התפלגות גאוסיאנית רב-ממדיתאנגלית: Multivariate normal distribution) היא הכללה של התפלגות נורמלית למשתנים מקריים רב-ממדיים. היא מוגדרת בתור וקטור משתנים מקריים, שכל צירוף ליניארי שלו מתפלג נורמלית. ישנה גם הגדרה (כללית יותר) בשפה של פונקציות אופייניות (הקובעת את המשתנה).

להתפלגות רב-נורמלית מספר שימושים, כגון הוכחת טענות על התפלגות הממוצע וסטיית התקן של משתנים מקריים שווי התפלגות נורמלית; טענות אלו שימושיות במיוחד בסטטיסטיקה. ניתן גם לנסח את משפט הגבול המרכזי בגרסה רב-ממדית בעזרת התפלגות רב-נורמלית.

הגדרה

יהי וקטור משתנים מקריים ממשיים. נאמר ש- מתפלג רב-נורמלית (או גאוסיאנית) אם לכל המשתנה המקרי (החד־ממדי) מתפלג נורמלית, כלומר קיימים (תלויים ב-) כך ש-.

אם משתנה רב-נורמלי, מסמנים . הוא וקטור התוחלות, כלומר

ו- היא מטריצת השונות משותפת

כאשר .

תכונות

הפונקציה האופיינית

ניתן לאפיין את המשתנים המקריים הגאוסיאניים בעזרת הפונקציה האופיינית שלהם: וקטור משתנים מקריים הוא גאוסיאני אם ורק אם הוא בעל פונקציה אופיינית:

כאשר מטריצה השונות היא חיובית.

בפרט, נובע שהמשתנים המקריים בלתי מתואמים אם ורק אם הם בלתי תלויים (מה שאינו נכון באופן כללי).

לכסון

לכל משתנה מקרי רב-נורמלי קיימים משתנה מקרי ומטריצה אורתוגונלית כך ש-, כאשר ו- הם הערכים עצמיים של (מטריצת השונויות המשותפות).

בכיוון ההפוך, לכל משתנה מקרי רב-נורמלי ולכל מטריצה אורתוגונלית , המשתנה המקרי גם הוא רב נורמלי: .

כדי להוכיח משפט זה, יש להפעיל לכסון אורתוגונלי על (בפרט, המטריצה נבחרת להיות המטריצה המלכסנת).

פונקציית צפיפות

כאשר מטריצת השונות איננה מטריצה סינגולרית - כלומר כל ערכיה העצמיים שונים מאפס, למשתנה הרב-נורמלי יש פונקציית צפיפות, הנתונה על ידי הנוסחא:

כאשר מסמן את הדטרמיננטה של .

התפלגויות שוליות

למציאת ההתפלגות השולית של משתנים מקריים המתפלגים רב-נורמלית, מספיק להשמיט את המשתנים הלא-רלוונטיים (המשתנים שיש לבצע עליהם אינטגרציה) מווקטור התוחלת וממטריצת השונות . ההוכחה לכך נובעת מההגדרה של ההתפלגות הרב-נורמלית ומאלגברה ליניארית.[1]

דוגמה

יהי ווקטור מקרי רב-נורמלי עם ווקטור תוחלת ומטריצת שונות . ההתפלגות השולית של היא התפלגות רב-נורמלית עם וקטור תוחלת ומטריצת שונות .

התפלגות רב-נורמלית סינגולרית

בדרך כלל מניחים כי מטריצת השונויות איננה מטריצה סינגולרית. כאמור, במקרה זה למשתנה הרב-נורמלי יש פונקציית צפיפות.

עם זאת, כאשר מורידים את ההנחה האחרונה (כלומר, יש ערכים עצמיים אפס), מתקבל משתנה מקרי רב-נורמלי סינגולרי. ההגדרה בעזרת הפונקציה האופיינית היא כללית יותר (כלומר, תקפה גם במקרה הסינגולרי). במקרה זה אין פונקציית צפיפות (ביחס למידת לבג) - ערכיה של פונקציית הצפיפות ייקבעו על ידי פחות מ- משתנים, ואינטגרל של פונקציה כזו הוא אפס ולא 1, כנדרש מפונקציית צפיפות.

בכל זאת, ניתן להגדיר מידות אחרות (על תת-מרחב -ממדי של ) ואז מוגדרת פונקציית צפיפות עבור משתנה מקרי ביחס למידה החדשה.

יישומים

אם משתנים מקריים בלתי תלויים המתפלגים , נסמן ו-. אז מתקיים:

, כלומר מתפלג סטודנט עם דרגות חופש.

קישורים חיצוניים

הערות שוליים

הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0

39995592התפלגות רב-נורמלית