גאומטריה אנליטית
במתמטיקה, גֵּאוֹמֶטְרִיָּה אָנָלִיטִית או הַנְדָּסָה שִׁעוּרִית[1] היא ענף העוסק בחקר הגאומטריה באמצעות כלים אלגבריים. בענף זה משתמשים לרוב במערכת צירים קרטזית כדי לתאר באמצעות משוואות מרחבים, ישרים, עקומות, מעגלים וכדומה, בדו-ממד ובתלת-ממד.
את היסודות לגאומטריה האנליטית הניח רנה דקארט, שעל שמו נקראת מערכת צירים קרטזית והמכפלה הקרטזית, בשנת 1637. עבודתו סיפקה את הבסיס לחשבון האינפיניטסימלי שפותח בנפרד על ידי אייזק ניוטון וגוטפריד וילהלם לייבניץ. יש הרואים בפיתוח הגאומטריה האנליטית את תחילתה של המתמטיקה המודרנית.
גאומטריה אנליטית במישור
בגאומטריה האנליטית של המישור (הבנויה על מערכת צירים קרטזית) מיוצגת כל נקודה על ידי זוג סדור של מספרים ממשיים, כאשר בערכם המוחלט, האחד מציין את המרחק (האנכי) של הנקודה מציר ה- והשני את המרחק של הנקודה מציר ה-.
החוזק של הגאומטריה האנליטית ביחס לגאומטריה האוקלידית, הוא באפשרות לתאר מושגים גאומטריים על ידי משוואות ופונקציות, ובכך לאפשר פתרון אלגברי לבעיה הגאומטרית.
מרחק בין נקודות
בבסיס התחום נמצאת הגדרת המרחק בין שתי נקודות, שמוגדרת לפי משפט פיתגורס:
קווים ישרים
קו ישר מוגדר להיות אוסף הנקודות שמקיימות משוואה מהצורה:
- .
כאשר המשוואה מגדירה את כל המישור או אף נקודה, ולא קו ישר במובן הרגיל של המילה.
כאשר ניתן להציג את הקו הישר על ידי משוואה מהצורה . משוואה זו נקראת המשוואה הקנונית של הישר (או המשוואה המפורשת של הישר). המספר שבמשוואה נקרא שיפוע הישר, והוא מייצג את מספר היחידות שהישר עובר בציר ה־ עבור כל יחידת אורך שהוא עובר בציר ה־. ישרים בעלי שיפוע זהה הם ישרים מקבילים. שיפוע הישר המקביל לציר ה־ הוא , ושיפוע הישר המקביל לציר ה־ אינו מוגדר ואי אפשר לייצג אותו באמצעות משוואה זו. המספר שבמשוואה הוא ערך ה- בנקודת חיתוך הישר עם ציר ה־.
המשוואה המפורשת של הישר היא יחידה – כלומר, אם נתונות שתי משוואות שונות, הן בהכרח מייצגות שני ישרים שונים, ולהפך. לעומת זאת, לכל ישר קיימות אינסוף משוואות רגילות המתארות אותו, כיוון שניתן להכפיל את המשוואה של ישר נתון בכל מספר ממשי שאינו אפס והמשוואה תוסיף ותתאר את אותו הישר.
מרחק בין ישרים מקבילים
בהינתן שני ישרים מקבילים , , המרחק ביניהם הוא
.
אם נדאג לכך ש-, אם מעל נוכל להשמיט את הערך המוחלט, ואם אם מתחת ל- נוכל לשים במקומו מינוס.
מרחק בין נקודה לישר
בהינתן ישר ונקודה המרחק ביניהם הוא
.
אם הנקודה מעל הישר נוכל להשמיט את הערך המוחלט, ואם הנקודה מתחת לישר נוכל לשים במקומו מינוס.
מעגלים
המעגל לפי הגדרתו הגאומטרית, הוא אוסף כל הנקודות שמרחקן מנקודה מסוימת שווה למספר חיובי קבוע - רדיוס המעגל. הנקודה המסוימת נקראת מרכז המעגל. משוואתו של מעגל מוגדרת כך:
- כאשר מרכז המעגל הוא הנקודה ורדיוסו .
כאשר מרכז המעגל נמצא בראשית הצירים - הנקודה , משוואת המעגל מקבלת את הצורה:
מעגל כזה נקרא מעגל קנוני, וקל לראות שניתן ליצור ממנו כל מעגל על ידי הזזה. כאשר רדיוס המעגל הקנוני הוא , המעגל נקרא מעגל היחידה. דרך נוחה להצגה פרמטרית של מעגל היחידה היא על ידי הנוסחה
- עבור .
קיימות נוסחאות דומות גם לחתכי חרוט אחרים (פרבולה, היפרבולה ואליפסה).
הכללה למרחב ה- ממדי
במרחב n-ממדי, מיוצגת כל נקודה על ידי וקטור -ממדי מעל המספרים הממשיים. מישור עילי במרחב -ממדי מוגדר על ידי כל הנקודות המיוצגות על ידי קומבינציות ליניאריות של וקטורים בלתי תלויים, המייצגים נקודות באותו מרחב. קו ישר מיוצג על ידי קבוצת כל הקומבינציות הליניאריות של שתי נקודות שונות ומישור (במרחב תלת-ממדי) על ידי כל הקומבינציות הליניאריות של שלוש נקודות שאינן על ישר אחד.
משמעות מודרנית
במשמעותה המודרנית גאומטריה אנליטית עוסקת בחקר של קבוצות אפסים של פונקציות אנליטיות. ישנם קשרים רבים בין גאומטריה אנליטית מודרנית לגאומטריה אלגברית מודרנית, למשל במשפטי ה-GAGA של ז'אן-פייר סר.
לקריאה נוספת
- ברוך בן-יהודה, גאומטריה אנליטית של המישור, הוצאת מסדה, מהדורה חמישית, 1965.
- שמשון עמיצור, גאומטריה אנליטית, אקדמון, תשכ"ט
- רחל בוהדנה, נורית הדס, שרה קירו, גאומטריה אנליטית, המחלקה להוראת המדעים - מכון ויצמן למדע, 1997.
קישורים חיצוניים
מיזמי קרן ויקימדיה |
---|
ערך מילוני בוויקימילון: גאומטריה אנליטית |
ערך מילוני בוויקימילון: אנליטי |
ערך מילוני בוויקימילון: הנדסה אנליטית |
- גאומטריה אנליטית, באתר MathWorld (באנגלית)
- גאומטריה אנליטית, באתר אנציקלופדיה בריטניקה (באנגלית)
הערות שוליים
- ^ המונחים במילוני האקדמיה | מונחי האקדמיה, באתר terms.hebrew-academy.org.il
גאומטריה אנליטית32661240Q134787