קבוע אוילר-מסקרוני
בערך זה |
קבוע אוילר, הידוע גם כקבוע אוילר-מסקרוני או כקבוע מסקרוני הוא קבוע מתמטי, שהשימוש העיקרי שלו הוא בתורת המספרים, המסומן באות גמא () ומוגדר על ידי הגבול:
כלומר קבוע אוילר הוא ההפרש האסימפטוטי בין הטור ההרמוני ללוגריתם הטבעי. הפרש זה מתכנס באופן טבעי מכיוון ש- ולכן סכום הוא מן "גרסה בדידה" של הלוגוריתם הטבעי. מכאן נובעת דרך תיאור נוספת של הקבוע: , כאשר הוא הערך השלם של x.
ערכו של הקבוע הוא בקירוב: (סדרה , באתר OEIS – האנציקלופדיה המקוונת לסדרות של מספרים שלמים המזהה לא מולא ולא נמצא בוויקינתונים, נא למלא את הפרמטר.). עדיין לא ידוע אם קבוע אוילר רציונלי או אי רציונלי.
היסטוריה
הקבוע הוגדר לראשונה על ידי המתמטיקאי השווייצרי לאונרד אוילר במאמרו "De Progressionibus harmonicus observationes" אשר פורסם בשנת 1735. אוילר השתמש בסימון C עבור הקבוע, וחישב בראשונה את ערכו בדיוק של 6 ספרות אחרי הנקודה. בשנת 1761 הוא הרחיב את החישוב, ופרסם אותו בדיוק של 16 ספרות אחרי הנקודה. בשנת 1790, הציע המתמטיקאי האיטלקי לורנצו מסקרוני את סימון הקבוע באות (גמא היוונית), וניסה להרחיב את ערכו של הקבוע עד ל-32 ספרות אחרי הנקודה, אם כי חישובים מאוחרים יותר גילו כי מסקרוני שגה בחישוב הספרה ה-20 אחרי הנקודה. המתמטיקאי ההודי סריניוואסה רמנוג'אן מצא טורים שונים המתכנסים ל-.
כפי שנאמר, לא ידוע האם קבוע אוילר הוא מספר רציונלי או לא. עם זאת, ניתוח שבר משולב מראה כי אם קבוע אוילר הוא רציונלי, הרי שהמכנה בשבר המגדיר אותו לא יהיה קטן מ-.
תכונות
קיום הקבוע
ההוכחה שהסדרה
מתכנסת לגבול סופי היא קלה מאוד, אך עדיין אינה טריוויאלית. ברור מן הגרף לעיל שזו סדרה מונוטונית עולה וחיובית ולכן מספיק להוכיח קיום חסם עליון. מספיק להראות ש-
קיים. קל לראות שלכל שטח המלבן שרוחבו 1 וגובהו קטן מהאינטגרל , ולכן מתקיים
לפיכך הגבול קיים ו-.
הצגות אינטגרליות
ניתן לקבל את ערכו של הקבוע גם על פי האינטגרלים הבאים:
- הפענוח נכשל (שגיאת המרה. השרת ("https://wikimedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle \gamma =-\int _{0}^{\infty }{e^{-x}\ln(x)}\,dx}
אינטגרלים אחרים אשר מכילים את ערך הם:
- הפענוח נכשל (שגיאת המרה. השרת ("https://wikimedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle \int _{0}^{\infty }{e^{-x}(\ln(x))^{2}}\,dx=\gamma ^{2}+1/6\pi ^{2}.}
ניתן לבטא את קבוע אוילר גם בעזרת אינטגרל כפול:
בדומה האינטגרל הכפול הבא שהוצג על ידי ג'. סונדאו (2005):
- הפענוח נכשל (שגיאת המרה. השרת ("https://wikimedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle \ln \left({\frac {4}{\pi }}\right)=\int _{0}^{1}\int _{0}^{1}{\frac {x-1}{(1+x\,y)\ln(x\,y)}}\,dx\,dy.}
מראה כי ניתן להסתכל על בתור "קבוע אוילר חילופי".
בשנת 1910, הציג ואקה את הסכום הבא:
כאשר הוא הלוגריתם בבסיס 2 ו- היא פונקציית הערך השלם.
ניתן לקבל את סדרתו של ואקה על ידי מניפולציה של אינטגרל Catalan.
קשרים לפונקציות מיוחדות
ניתן לבטא את קבוע אוילר גם כטור אינסופי של איברים הכוללים ערכים של פונקציית זטא של רימן של מספרים שלמים וחיוביים:
סדרות נוספות הקשורות לפונקציית זטא של רימן:
כמו כן, ניתן לבטא את הקבוע על ידי פונקציית בטא (במונחים של פונקציות גמא):
שני גבולות השווים בערכם לקבוע אוילר-מסקרוני הם הגבול האנטי-סימטרי:
והגבול
הפענוח נכשל (שגיאת המרה. השרת ("https://wikimedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle \gamma =\lim _{x\to \infty }\left[x-\Gamma \left({\frac {1}{x}}\right)\right]=\lim _{n\to \infty }{\frac {1}{n}}\,\sum _{k=1}^{n=1}\left(\left\lceil {\frac {n}{k}}\right\rceil -{\frac {n}{k}}\right)}
סדרת זטא הרציונלית היא ביטוי קשור מאוד לנוסחה שהוצגה לעיל. אם נסיר מספר איברים מהסדרה לעיל, ניתן לקבל הערכה לגבול סדרה הקלאסי:
כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \zeta(s,k)^{}_{}} היא פונקציית הורביץ-זטא. הסכום במשוואה זה מערב מספרים הרמוניים, המסומנים ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,H_n} . הרחבת מספר איברים בפונקציית הורביץ-זטא מביא אותנו למשוואה:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_n = \ln n + \gamma + \frac {1} {2n} - \frac {1} {12n^2} + \frac {1} {120n^4} - \varepsilon } , כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0 < \varepsilon < \frac {1} {252n^6}.}
לבסוף, ניתן לחשב את הקבוע כנגזרת של פונקציית גמא של אוילר:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma = -\Gamma'(1)^{}_{}.}
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^\gamma}
הקבוע הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,e^\gamma} נחשב גם הוא לקבוע חשוב בתורת המספרים. מדי פעם, מסמנים קבוע זה גם ב ומבטאים אותו בעזרת הגבול הבא, כאשר pn הוא המספר הראשוני ה-n-י:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^\gamma = \lim_{n \to \infty} \frac {1} {\ln p_n} \prod_{i=1}^n \frac {p_i} {p_i - 1} }
אשר מהווה ניסוח מחודש לשלישי מבין משפטי מרטן. הערך המספרי של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,e^\gamma} הוא:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^\gamma =1.78107241799019798523650410310717954916964521430343\dots}
מכפלות אינסופיות נוספות הקשורות לערך של קבוע זה הן:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{e^{1+\gamma /2}}{\sqrt{2\,\pi}} = \prod_{n=1}^\infty e^{-1+1/(2\,n)}\,\left (1+\frac{1}{n} \right )^n }
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{e^{3+2\gamma}}{2\, \pi} = \prod_{n=1}^\infty e^{-2+2/n}\,\left (1+\frac{2}{n} \right )^n. }
שתי המכפלות הללו נובעות פונקציית G של בארנס. כמו כן:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^{\gamma} = \left ( \frac{2}{1} \right )^{1/2} \left (\frac{2^2}{1 \cdot 3} \right )^{1/3} \left (\frac{2^3 \cdot 4}{1 \cdot 3^3} \right )^{1/4} \cdots }
שהוצג על ידי ג'ונתן סונדאו על ידי שימוש בפונקציות היפר-גאומטריות.
מופעים
קבוע אוילר-מסקרוני מופיע, בנוסף למקומות אחרים, גם ב:
- אי-שוויון עבור פונקציית אוילר.
- שיעור צמיחה של פונקציית המחלקים.
- נוסחת כפל עבור פונקציית גמא.
- חישוב של פונקציית דיגאמה.
- ביטויים הכוללים את האינטגרל המעריכי.
- האיבר הראשון בפיתוח טור טיילור עבור פונקציית זטא של רימן.
- ביטוי למציאת קירוב של צפיפות מספרים ראשוניים בתחום מסוים.
ראו גם
לקריאה נוספת
- Jeffery C. Lagarias, 2013. Euler's constant: Euler's Work and Modern Developements, Bulleting of the AMS, 50(4), 527-628
קישורים חיצוניים
- קבוע אוילר-מסקרוני, באתר MathWorld (באנגלית)
32704790קבוע אוילר-מסקרוני