צירוף ליניארי
באלגברה לינארית, צירוף לינארי הוא סכום של מספר סופי של וקטורים שכל אחד מהם מוכפל בסקלר. בגלל סגירותו של המרחב הווקטורי ביחס לחיבור וכפל בסקלר, הצירוף הלינארי אף הוא וקטור השייך לאותו מרחב וקטורי. בהינתן קבוצה מתאימה של וקטורים - קבוצה פורשת - ניתן לכתוב כל וקטור במרחב כצירוף לינארי של איברים מתוך הקבוצה.
מבחינה פורמלית, צירוף לינארי מוגדר כך. בהינתן סדרה של וקטורים במרחב, וסדרה של סקלרים, נקרא לביטוי
צירוף לינארי של הווקטורים. בקיצור ניתן לכתוב
קבוצה תיקרא תלויה לינארית אם קיים בה וקטור שהוא צירוף לינארי של וקטורים אחרים מהקבוצה. או באופן שקול, קבוצה היא תלויה לינארית אם קיים צירוף לינארי לא טריוויאלי של איבריה (לא כל הסקלרים אפס) ששווה לווקטור האפס.
בהתאם לכך וקטור האפס יהיה תמיד צירוף לינארי של כל קבוצת וקטורים, וכשהוא יינתן בתוך קבוצה אזי הקבוצה תהיה תלויה לינארית.
נושאים באלגברה ליניארית | ||
---|---|---|
מושגי יסוד | שדה • מרחב וקטורי • משוואה ליניארית • מערכת משוואות ליניאריות • העתקה ליניארית • מטריצה | |
וקטורים | סקלר • כפל בסקלר • צירוף ליניארי • תלות ליניארית • קבוצה פורשת • בסיס • וקטור קואורדינטות • ממד | |
מטריצות | כפל מטריצות • שחלוף • דטרמיננטה • דירוג מטריצות • דרגה • עקבה • מטריצה מצורפת • מטריצת מעבר • מטריצה משולשית • דמיון מטריצות • ערך עצמי • פולינום אופייני • לכסון מטריצות • צורת ז'ורדן | |
העתקות | העתקה ליניארית • קואורדינטות • מטריצה מייצגת • גרעין • אנדומורפיזם • איזומורפיזם • העתקה אפינית • העתקה פרויקטיבית | |
מרחבי מכפלה פנימית | מכפלה סקלרית • מכפלה וקטורית • אורתוגונליות • מטריצה סימטרית • אופרטור הרמיטי • אופרטור אוניטרי • טרנספורמציה נורמלית • נורמה • מטריקה | |
תבניות | תבנית ביליניארית • תבנית סימטרית • תבנית הרמיטית • תבנית סימפלקטית • חפיפת מטריצות • משפט סילבסטר • תבנית מולטי-ליניארית אנטי-סימטרית • אוריינטציה • צפיפות • טנזור |