משפט אגורוף

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

בערך זה
נעשה שימוש
בסימנים מוסכמים
מתחום המתמטיקה.
להבהרת הסימנים
ראו סימון מתמטי.

משפט אגורוף (או משפט סבריני–אגורוף) מבטא עיקרון יסודי באנליזה פונקציונלית, לפיו כל סדרת פונקציות המתכנסת לפונקציה גבולית, במונחי תורת המידה היא "כמעט" מתכנסת במידה שווה. כלומר כל התכנסות של סדרת פונקציות קרובה להיות התכנסות במידה שווה במובן של קירוב שיתואר בהמשך.

את המשפט הוכיחו באופן בלתי־תלוי המתמטיקאי האיטלקי קרלו סבריני בשנת 1910, והמתמטיקאי והפיזיקאי הרוסי דמיטרי אגורוף בשנת 1911.

נוסח פורמלי

יהי מרחב מידה סופי, כלומר . תהי סדרת פונקציות מדידות המתכנסת נקודתית לפונקציה גבולית כמעט תמיד.

אזי לכל קיימת קבוצה מדידה עבורה , כך שעל ההתכנסות היא במידה שווה.

כישלון משפט אגורוף במרחב מידה אינסופי

נתבונן במרחב כאשר היא מידת לבג. מידתו של מרחב זה היא אינסופית (למעשה היא אף סיגמא־סופית). ניתן לראות כי סדרת הפונקציות המציינות מתכנסת נקודתית לפונקציה הגבולית אפס, אך אינה מתכנסת במידה שווה על אף תת-קבוצה ממידה אינסופית של הממשיים.

הוכחה

נסמן . נשים לב כי אם ורק אם לכל מתקיים .

המשמעות של ההתכנסות כמעט תמיד היא שמתקיים , ומההנחה כי המרחב סופי נובע שניתן להשתמש ברציפות המידה ולהסיק כי .

כעת בהינתן , לכל נבחר גדול מספיק שעבורו . נגדיר ונקבל כי .

ברור מהגדרת שלכל מתקיים , כאשר אינו תלוי ב־ , ולכן על ההתכנסות היא במידה שווה.

לקריאה נוספת

  • Egoroff, D. Th. (1911), "Sur les suites des fonctions mesurables", Comptes rendus de l'Académie des sciences#1666-1965|Comptes rendus hebdomadaires des séances de l'Académie des sciences (בצרפתית), 152: 244–246, JFM 42.0423.01


הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0