מקדם בינומי גאוסי
במתמטיקה, המקדמים הבינומיים הגאוסיים הם אנלוגי-q של המקדמים הבינומיים. המקדם הבינומי הגאוסי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textstyle\binom nk_q} הוא פולינום ב-q עם מקדמים טבעיים, אשר, כאשר ערכו של q הוא חזקה של מספר ראשוני, סופר את מספר תת-המרחבים הליניאריים מממד k המוכלים במרחב וקטורי עם ממד n מעל שדה סופי בעל q איברים.
קרל פרידריך גאוס הציג את המקדמים הללו במאמר מ-1805, בו נעזר בהם כדי לפתור בעיה בתורת המספרים שעסקה בקביעת הסימן של סכום גאוס ריבועי מסוים.
הגדרה
המקדמים הבינומיים הגאוסיים מוגדרים בנוסחה:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle {m \choose r}_q = \begin{cases} \frac{(1-q^m)(1-q^{m-1})\cdots(1-q^{m-r+1})} {(1-q)(1-q^2)\cdots(1-q^r)} & r \le m \\ 0 & r>m \end{cases}}
כאשר m ו-r הם שני מספרים שלמים אי-שליליים. כאשר r = 0 ערך המקדם הוא 1 כיוון שהמונה והמכנה שניהם מכפלות ריקות. אף על פי שהנוסחה נראית במבט ראשון כמו פונקציה רציונלית, היא מייצגת למעשה פולינום, מכיון שפעולת החלוקה מדויקת ב-[Z[q. שים לב גם שהנוסחה תקפה גם ל- r = m + 1, ונותנת 0 אודות לגורם q0 - 1 = 0 שבמונה, בהתאמה עם ההגדרה של המקדם. כל הגורמים במונה ובמכנה מתחלקים ב-1−q, שכן:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle [k]_q=\sum_{0\leq i<k}q^i=1+q+q^2+\cdots+q^{k-1}= \begin{cases} \frac{1-q^k}{1-q} & \text{for} & q \neq 1 \\ k & \text{for} & q = 1 \end{cases},}
חלוקת הגורמים הללו נותנת את הנוסחה השקולה:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle {m \choose r}_q=\frac{[m]_q[m-1]_q\cdots[m-r+1]_q}{[1]_q[2]_q\cdots[r]_q}\quad(r\leq m),}
אשר מאמתת את העובדה שהצבת q = 1 ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tbinom mr_q} נותנת את המקדם הבינומי הרגיל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tbinom mr} . במונחים של q-עצרת הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle [n]_q!=[1]_q[2]_q\cdots[n]_q} , הנוסחה ניתנת לכתיבה מחדש גם כ-:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle {m \choose r}_q=\frac{[m]_q!}{[r]_q!\,[m-r]_q!}\quad(r\leq m),}
צורה קומפקטית זאת מוכיחה מיד את הסימטריה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tbinom mr_q=\tbinom m{m-r}_q} בעבור r ≤ m.
בשונה מהמקדם הבינומי הרגיל, המקדם הבינומי הגאוסי מקבל ערך סופי כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle m\rightarrow \infty} (הגבול הוא בעל משמעות אנליטית כאשר q|<1|):
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\infty \choose r}_q = \lim_{m\rightarrow \infty} {m \choose r}_q = \frac{1}{[r]_q!\,(1-q)^r}}
פירוש המקדמים בעזרת אלגברה ליניארית
למקדמים הבינומיים הגאוסיים יש פרשנות מעניינת מתחום האלגברה הליניארית, שהופכת אותם לחשובים בתאוריה של מרחבים פרויקטיביים. מקדמים אלו סופרים למעשה את מספר תת-המרחבים מממד k המוכלים במרחב וקטורי מממד n מעל שדה סופי בעל q איברים. נראה זאת.
כיוון שתת-מרחב k ממדי נפרש על ידי k וקטורים בלתי תלויים ליניארית הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (v_1,...,v_k)} , אזי ראשית, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_1} יכול להיות כל וקטור שונה מוקטור האפס של V. לפיכך, ייתכנו הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^n - 1} בחירות בעבור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_1} . בהינתן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_1} , אז הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_2} יכול להיבחר מבין אוסף הווקטורים שאינם נמצאים בתת-מרחב הנפרש על ידי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_1} . כיוון שלתת-מרחב זה יש q איברים, ייתכנו הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^n - q} בחירות עבור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_2} . כשממשיכים בדרך הזו, רואים שבהינתן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_1,...,v_l} וקטורים בלתי תלויים (כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle k<l} ), ישנן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^n - q^l} בחירות אפשריות בעבור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_{l+1}} .
מספר הצירופים של k וקטורים בלתי תלויים ליניארית מ-V הוא לפיכך:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (q^n-1)(q^n-q)\cdots(q^n-q^{k-1})} .
באמצעות יישום הנוסחה האחרונה למקרה הפרטי בו הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n = k} , ניתן להיווכח בכך שלכל תת-מרחב k ממדי של V יש בדיוק
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (q^k-1)(q^k-q)\cdots(q^k-q^{k-1})} בסיסים.
כדי לקבל את מספר תת-המרחבים ה-k ממדיים, יש לחלק את הביטוי הראשון בשני. כיוון שכך, מספר תת-המרחבים ה-k ממדיים של V הוא:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \binom nk_q = \frac{{(q^n-1)(q^n-q)\cdots(q^n-q^{k-1})}}{{(q^k-1)(q^k-q)\cdots(q^k-q^{k-1})}}}
ולאחר צמצום כל ה-q-ים שבמונה ובמכנה מקבלים את הצורה הסטנדרטית של המקדם הבינומי הגאוסי.
תכונות חשובות
כמו המקדמים הבינומיים הרגילים, המקדמים הבינומיים הגאוסיים הם סימטריים ביחס למרכז, כלומר נשמרים תחת הפעולה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle r \rightarrow m-r } :
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle {m \choose r}_q = {m \choose m-r}_q }
כמו כן מתקיים:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle {m \choose 0}_q ={m \choose m}_q=1 \, ,}
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle {m \choose 1}_q ={m \choose m-1}_q=\frac{1-q^m}{1-q}=1+q+ \cdots + q^{m-1} \quad m \ge 1 \, .}
השם מקדם בינומי גאוסי נגזר מן העובדה שהערכה שלהם בנקודה q = 1 נותנת
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{q \to 1} {m \choose r}_q = {m \choose r}}
בעבור כל ערכי m ו-r.
הזהויות האנלוגיות לזהויות פסקל במקרה של מקדמים בינומיים גאוסיים הן:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle {m \choose r}_q = q^r {m-1 \choose r}_q + {m-1 \choose r-1}_q}
ו-:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle {m \choose r}_q = {m-1 \choose r}_q + q^{m-r}{m-1 \choose r-1}_q} .
הקשר לחלוקות של מספרים
למקדמים הללו יש גם קשר אריתמטי מעניין לחלוקות של מספרים[1], כפי שגאוס עצמו הבחין במאמרו על קביעת הסימן של סכומי גאוס.
כאשר מגבילים את מספרם וגודלם של החלקים של מספר טבעי נתון n, אז ניתן לשאול את השאלה כמה חלוקות שונות יש למספר זה לכדי לכל היותר M חלקים, שלכל אחד מהם גודל של לכל היותר N. באופן שקול, אלו בדיוק החלוקות שניתן לתחום את דיאגרמת יאנג שלהן במלבן בגודל M × N. אם נסמן את מספר החלוקות הללו ב-(p(N, M; n, אז ישנו יחס נסיגה
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle p(N,M;n) = p(N,M-1;n) + p(N-1,M;n-M) }
המקדם הבינומי הגאוסי מוגדר כ-
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle {k+\ell \choose \ell}_q = {k+\ell \choose k}_q = \frac{\prod^{k+\ell}_{j=1}(1-q^j)}{\prod^{k}_{j=1}(1-q^j)\prod^{\ell}_{j=1}(1-q^j)}}
ולו קשר הדוק לפונקציה היוצרת של (p(N, M; n, כפי שבא לידי ביטוי בשוויון:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum^{MN}_{n=0}p(N,M;n)q^n = {M+N \choose M}_q} .
דוגמאות
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle {0 \choose 0}_q = {1 \choose 0}_q = 1}
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle {1 \choose 1}_q = \frac{1-q}{1-q}=1}
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle {2 \choose 1}_q = \frac{1-q^2}{1-q}=1+q}
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle {3 \choose 1}_q = \frac{1-q^3}{1-q}=1+q+q^2}
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle {3 \choose 2}_q = \frac{(1-q^3)(1-q^2)}{(1-q)(1-q^2)}=1+q+q^2}
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle {4 \choose 2}_q = \frac{(1-q^4)(1-q^3)}{(1-q)(1-q^2)}=(1+q^2)(1+q+q^2)=1+q+2q^2+q^3+q^4}
ראו גם
קישורים חיצוניים
- מקדם בינומי גאוסי, באתר MathWorld (באנגלית)
הערות שוליים
שגיאות פרמטריות בתבנית:מיון ויקיפדיה
שימוש בפרמטרים מיושנים [ דרגה ] מקדם בינומי גאוסי25294847