הגבול של sin(x)/x
בערך זה |
כאשר ערכה של הזווית x (ברדיאנים) הולך ומתקרב לאפס, היחס בין הסינוס של לבין הולך ומתקרב ל-. בלשון מתמטית, אומרים שהגבול של המנה כאשר שואף לאפס, שווה ל-, ובנוסחה: .
גבול זה שווה, לפי ההגדרה, לנגזרת של פונקציית הסינוס בנקודה 0. בעזרת הגבול הזה אפשר לחשב את הנגזרת של פונקציית הסינוס בכל הישר, ודרך כך לקבל עובדות בסיסיות אחרות באנליזה של פונקציות טריגונומטריות, כגון טורי טיילור שלהן וגבולות רבים אחרים המערבים פונקציות טריגונומטריות.
הוכחת הזהות
לזהות קיימות מספר הוכחות מהירות, המסתמכות על עובדות ידועות. מאלה, המכשלה הנפוצה ביותר היא השימוש בכלל לופיטל: כידוע, הנגזרת של פונקציית הסינוס היא פונקציית הקוסינוס, ועל-פי הכלל, הגבול של המנה , כאשר x שואף לאפס, שווה לגבולה של מנת הנגזרות, , השווה בתורו ל-1. אלא שכדי למצוא את הנגזרת של פונקציית הסינוס, אין מנוס משימוש בגבול שאותו אנו מנסים להוכיח כאן (אם מגדירים את הסינוס באופן גאומטרי), שכן הגבול הוא מקרה פרטי של הנגזרת בנקודה 0 ואם לא יכולים להוכיח את הגבול, גם את הנגזרת אי אפשר להוכיח.
בגישה אחרת, אנליטית, מגדירים את פונקציות הסינוס והקוסינוס על-פי טורי טיילור הידועים שלהן, כלומר ו- . אז מוכיחים שהפונקציות מקיימות את הזהויות הטריגונומטריות המוכרות, כגון . הוכחת הזהויות אינה קשה משום שהטורים מתכנסים בהחלט בכל הישר הממשי. ההגדרה כוללת בתוכה גם את הגבול שבכותרת, שהרי את הגבול של היחס אפשר לקרוא מן המקדם של x בנוסחה לסינוס. הבעיה היא שהפונקציות מקיימות אותן זהויות טריגונומטריות, עבור כל ערך של t, ולכן קשה לקשור בשיטה זו את הפונקציות אל המשמעות הגאומטרית המקובלת שלהן.
הוכחתה של זהות יסודית כל-כך מצריכה באופן טבעי התבוננות זהירה בהגדרות של המושגים שבהם משתמשים, ובהם - זווית, רדיאן, אורך, סינוס ואפילו פאי. משום כך, נזכיר כאן את ההגדרות הדרושות בניסוח הטענה ובהוכחתה. להלן מובאות שתי הוכחות אפשריות, שבאחת מהן משתמשים בהשוואה של שטחים, ובשנייה בהשוואה של אורכי ישרים וקשתות. שתי השיטות מבוססות על ההגדרה הבאה של זווית: שני ישרים נפגשים ביניהם ב"זווית x", אם x הוא אורך הקשת שהם גוזרים ממעגל ברדיוס 1 סביב נקודת החיתוך שלהם.
בסיס ההוכחה
הן ההוכחה מבוססת האורך והן ההוכחה מבוססת השטח משתמשות באותה בניית עזר, ופועלות להשגת מטרה משותפת: הוכחת אי-השוויון עבור x חיובי וקטן[1]
כעת נחלק ב- ונקבל , כלומר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \cos x < \frac{\sin x}{x} < 1 } , והגבול המבוקש נובע על-פי כלל הסנדוויץ'.
בניית העזר המשמשת בשתי ההוכחות מוצגת בתמונה משמאל. אנו בונים על מעגל היחידה משולש שווה-שוקיים AOB, כאשר O הוא מרכז המעגל ו-AO=OB הם רדיוסים שהזווית ביניהם היא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x} . נסמן ב- C את מפגש הגובה היורד מ- B אל הצלע AO, עם הצלע, וב- D את מפגש האנך העולה מ- AO בנקודה A, עם הישר OB.
על-פי הגדרת הסינוס והקוסינוס, אורך הצלע BC הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \sin x} , ואורך הצלע AD הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \tan x} . בשלב זה מתפצלת ההוכחה עבור כל אחת משתי הגישות השונות. מן הבחינה העקרונית, שתי השיטות נסמכות על רעיונות בעלי מורכבות דומה, ואפשר לטעון שהעדפת שיטה אחת או אחרת היא עניין של טעם.
הוכחה מבוססת שטח
בגישה זו, ההוכחה של אי-השוויון הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \sin(x)<x<\tan(x)} מתבצעת על ידי השוואת שטחי המשולש AOB, הגזרה AOB (התחומה על ידי הרדיוסים AO ו-OB והקשת AB) והמשולש AOD.
שטח המשולש AOB הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \sin(x)/2} (הגובה BC כפול הצלע OA שאורכה יחידה, חלקי 2). בצורה דומה, שטח המשולש הגדול יותר, AOD, הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \tan(x)/2} .
החישוב המרכזי הוא זה של שטח הגזרה AOB, ובו טמונה מורכבות ההוכחה. בשל הסימטריה של המעגל, שטח של גזרה הנשענת על זווית של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x} רדיאנים מהווה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \frac{x}{2\pi}} משטח המעגל הכולל. על כן, אם ידוע כי שטח מעגל היחידה הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \pi} , הרי ששטח הגזרה הוא .
כיוון שבבירור המשולש AOB מוכל בגזרה AOB שמוכלת במשולש AOD מתקבל על ידי השוואת שטחיהם אי השוויון הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \frac{\sin(x)}{2}< \frac{x}{2}<\frac{\tan(x)}{2}} וממנו נובעת התוצאה המבוקשת.
נותר להוכיח את הקביעה ששטח מעגל היחידה הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \pi} . גישה אחת להוכחה זו מבוססת על "שיטת המיצוי" שפיתחו הגאומטריקנים היוונים, המחלקת את המעגל למשולשים שמספרם הולך ורב, ומראה שהשגיאה בהערכת השטח, הכוללת את הפערים שבין גזרות למשולשים, חסומה בטבעת שאפשר לעשותה דקה כרצוננו. סכום אורכיהם של בסיסי המשולשים שואף להיקף המעגל, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 2\pi} , ואילו הגובה בכל אחד מהמשולשים שואף לרדיוס שאורכו יחידה, ולכן סכום שטחי המשולשים שואף ל-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \pi} . שיטה דומה עוטפת את המעגל מבחוץ ומבפנים במצולעים משוכללים.
הוכחה מבוססת אורך
כיוון שהצלע BC היא סינוס x, הקשת BA היא x ואילו הצלע AD היא טנגנס x, כל שנותר להראות הוא שהצלע BC קצרה מהקשת BA, שקצרה מהצלע AD. לשם כך אין מנוס מלהגדיר במדויק מהו אורך של קו שאינו ישר, מסילה. אורכה של מסילה הוא המספר הקטן ביותר הגדול מסכום המרחקים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ |P_1P_2|+\dots+|P_{n-1}P_n|} לכל סדרה סופית של נקודות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ P_1,\dots,P_n} על המסילה. הגדרה זו, הגם שהיא מובלעת בחישובי שטחים ונפחים מאז אוקלידס, לא הופיעה בצורתה זו במפורש, אלא בתקופתם של ניוטון ולייבניץ, מייסדי החשבון האינפיניטסימלי.
כעת, כיוון שהמשולש ACB ישר-זווית, מתקיים , אבל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 2\sin(x/2)<x} כיוון שהקשת שאורכה x מחברת את הנקודות AB, שהמרחק ביניהן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 2\sin(x/2)} . בכך סיימנו להוכיח את חלקו השמאלי של האי-שוויון.
כדי להוכיח את אי-השוויון באגף ימין, נבחין שהמרחק בין A ל-D הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \tan(x)} . נראה שהקשת x קצרה מן הקטע AD. נניח שהנקודות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ P_1,\dots,P_n} פזורות לאורך הקשת AB ומסודרות לפי קרבתן ל- A. נעביר את הרדיוסים מהנקודה O אל הנקודות האלה, ונמשיך אותם עד שיפגשו בקטע AD. את נקודות המפגש נסמן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ Q_1,\dots,Q_n} . כעת נשאר להראות שסכום המרחקים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ |P_iP_{i+1}|} קטן מסכום המרחקים . עבור כל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ i=1,\dots,n-1} , אפשר להעביר במרובע הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ P_iP_{i+1}Q_{i+1}Q_i} את הישר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ Q_{i}R} המקביל לצלע הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ P_iP_{i+1}} ; הזוויות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \angle P_{i+1}P_{i}Q_i, \angle P_iP_{i+1}Q_{i+1}, \angle Q_iRQ_{i+1}} כולן קהות ושוות זו לזו, כבאיור משמאל. מכאן ברור ש- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ |P_iP_{i+1}|<|Q_iR|<|Q_iQ_{i+1}|} . כשמסכמים את אי-השוויונים האלה, מתקבל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \sum|P_iP_{i+1}|<\sum|Q_iQ_{i+1}|=|AD|} , כדרוש.
הוכחת הגבול באמצעות הנגזרת של arcsin
אפשר להוכיח את נגזרת הסינוס על ידי נגזרת הפונקציה ההפוכה שלה:הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\arcsin (x))'=\frac{1}{\sqrt{1-x^2}}} כאשר מזה נובע על פי כלל השרשרת הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\sin (x))'=\sqrt {1-y^2}=\sqrt {1-\sin^2 x}=cos x} מזה נובע הגבול המבוקש כמקרה פרטי של הנגזרת בנקודה 0 כלומר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x \rightarrow 0} \frac{\sin x}{x} = (\sin x)'|_{x = 0} = \cos(0) = 1}
אחת ההוכחות דומה להוכחה מבוססת האורך של הגבול. אם מעגל היחידה הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(t)=t^2+y^2=1} אז אורך הקשת ארכסינוס x ניתן לחישוב על ידי אינטגרל: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \arcsin (x)=\int\limits_{0}^{x}{\sqrt{1+\bigl(\frac{-t}\sqrt{1-t^2}}\bigr)^2dt}} . ועל פי המשפט היסודי של החשבון הדיפרנציאלי והאינטגרלי, מתקיים:הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\arcsin (x))'=\left(\int\limits_{0}^{x}{\sqrt{1+\bigl(\frac{-t}\sqrt{1-t^2}}\bigr)^2dt}\right)'=\frac{1}{\sqrt {1-x^2}}} הוכחה נוספת דומה להוכחה על פי השטח ובנויה על חישוב הארכסינוס על פי שטח הגזרה שאותה בתורה מחשבים על ידי אינטגרל.
הבעייה בהוכחות הללו היא שנזקקים בהן להוכחת גבולות כלליים יותר, ובעצם ההוכחה נשענת ברמה מסויימת על ההוכחות שנכתבו כאן.
ראו גם
קישורים חיצוניים
- גרף של הפונקציה
- גדי אלכסנדרוביץ', הונאה מעבר לגבול, באתר "לא מדויק", 20 בינואר 2008
- פרק בספר למורים "ללמוד וללמד אנליזה"
הערות שוליים
- ^ אי-השוויון נכון לכל x בקטע ; כיוון שמטרתנו היא לחשב את הגבול באפס, די להוכיח את אי-השוויון עבור x קטן מספיק.