משפט לי

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

באלגברה מופשטת, משפט לי קובע כי כל האיברים של תת-אלגברת לי פתירה של אלגברת האנדומורפיזמים ניתנים להצגה בבסיס מסוים למטריצות משולשיות עליונות.

ניסוח פורמלי

תהי תת-אלגברת לי פתירה של אלגברת האנדומורפיזמים עבור מרחב וקטורי מממד סופי, מעל שדה סגור אלגברית ובעל מאפיין אפס. אז כל איבר ב- ניתן להציג לפי בסיס מסוים בתור מטריצה משולשית עליונה.

מסקנות

מהמשפט ניתן להסיק כי אם פתירה, יש שרשרת אידיאלים , כך ש-.

כתוצאה מכך, יחד עם משפט אנגל, נובע אם אלגברת לי פתירה, אז נילפוטנטית. קל לראות שגם ההפך נכון, ולכן פתירה אם ורק אם נילפוטנטית.

ראו גם

לקריאה נוספת

  • Introduction to Lie Algebras and Representation Theory, James Humphreys, 15-17
הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0

משפט לי22378557