מספר ראשוני רגולרי

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

בתורת המספרים, מספר ראשוני רגולרי הוא מספר ראשוני גדול מ-2, המקיים תכונה מסוימת, שתוצג בהמשך. את המושג הציע ארנסט קומר, שגם הוכיח בשנת 1847 את המשפט האחרון של פרמה עבור ראשוניים כאלה.

עד 100, הראשוניים היחידים שאינם רגולריים הם: 37, 59 ו-67. משערים שצפיפות הראשוניים הרגולריים בין שאר הראשוניים היא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^{-\frac{1}{2}} \approx 60.65\,\%} , אבל לא ידוע אפילו האם ישנם אינסוף כאלה. ב-1915 הוכיח יוהאן ינסן שיש אינסוף ראשוניים שאינם רגולריים.

ההגדרה

עבור מספר טבעי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ n} , שורש יחידה מסדר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ n} הוא מספר מרוכב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \rho_n} שכאשר מעלים אותו בחזקת n (אבל לא בחזקה קטנה יותר) מתקבל 1. לדוגמה, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \frac{-1+\sqrt{-3}}{2}} הוא שורש היחידה מסדר 3, ו- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ i=\sqrt{-1}} הוא שורש יחידה מסדר 4.

'החוג הציקלוטומי' הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \mathbb{Z}[\rho_n]} הוא, על-פי ההגדרה, החוג הקטן ביותר המכיל את המספרים השלמים ואת שורשי היחידה מסדר n. (זהו חוג השלמים של השדה הציקלוטומי מסדר n). נזכיר שבחוג קומוטטיבי R, כל קבוצה הסגורה לחיבור וחיסור ולכפל באברי החוג נקראת אידיאל, בעוד שאידיאלים מן הצורה המיוחדת הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ Ra = \{ra : r \in R\}} הם 'אידיאלים ראשיים'. חוג שבו כל האידיאלים ראשיים, נקרא תחום ראשי - אלא שבדרך כלל החוג הציקלוטומי אינו כזה.

הגדרה. הראשוני הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ p} הוא ראשוני רגולרי אם לכל אידיאל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ I} של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \mathbb{Z}[\rho_p]} , מן ההנחה ש- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ I^p} הוא אידיאל ראשי נובע שגם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ I} עצמו הוא ראשי.

במילים אחרות, מספר ראשוני הוא רגולרי אם הוא אינו מחלק את סדר חבורת המחלקות של השדה הציקלוטומי המתאים.

הקשר למשפט פרמה

ב- 1753 הוכיח לאונרד אוילר את המשפט האחרון של פרמה עבור החזקה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ p=3} : אין פתרונות שלמים למשוואה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x^3+y^3=z^3} , פרט לפתרונות הצפויים, שבהם אחד המשתנים שווה לאפס. ב-1770 הגדיר אוילר את החוג הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \mathbb{Z}[\rho_3]} , והשתמש בתכונות שלו כדי לתת הוכחה נוספת לאותה טענה. הרעיון הבסיסי בהוכחה זו היה הפירוק של הביטוי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x^3+y^3} למכפלה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ (x+y)(x+\rho_3y)(x+\rho_3^2y)} , שבו הגורמים אינם עוד מספרים שלמים, אלא איברים של החוג הציקלוטומי. במקרה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ p=3} החוג הזה מקיים תכונות אריתמטיות חזקות מאוד (זהו חוג אוקלידי, ובפרט חוג ראשי), וכך יכול היה אוילר להסיק שאם המכפלה שווה לחזקה שלישית הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ z^3} , כך צריך להיות כל אחד מן הגורמים (עד כדי כפל באיברים הפיכים של החוג).

בשיטה זו הוכיחו את משפט פרמה גם עבור החזקות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ p=5} ו- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ p=7} .

ב-1847 הראה ארנסט קומר שאם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ u} הוא איבר הפיך בחוג הציקלוטומי מסדר p, אז הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ u^p} הוא מספר שלם. הבחנה זו אפשרה לו להכליל את הרעיונות של קודמיו, והוא הראה ששיטת ההוכחה של אוילר שוללת את קיומם של פתרונות שלמים למשוואה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x^p+y^p=z^p} לכל ראשוני אי-זוגי p, ובלבד שהאידיאלים בחוג הציקלוטומי מקיימים תכונה מסוימת. לתכונה זו קרא קומר 'רגולריות' של p.

קריטריון לרגולריות

קומר לא הסתפק בהוכחה של משפט פרמה עבור ראשוניים רגולריים - הוא מצא גם תנאי חישובי לרגולריות, מתחום אחר לחלוטין, והוכיח כי ראשוני הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ p\geq 5} הוא רגולרי אם ורק אם הוא אינו מחלק את המונה של מספרי ברנולי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ B_2,B_4,B_6,\dots,B_{p-3}} , המתקבלים מפיתוח טיילור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \frac{x}{e^x-1}=\sum_{n=0}^{\infty}\frac{B_n}{n!}x^n} .

קישורים חיצוניים

הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0

מספר ראשוני רגולרי30258027Q426491